Смекни!
smekni.com

Методи та засоби зменшення обсягів даних тріангуляційного опису об’єктів комп’ютерної томографії (стр. 2 из 5)

Практичну цінність одержаних результатів підтверджують акти впровадження, отримані у Національному університеті "Львівська політехніка" та НВП "Інтрон".

Особистий внесок здобувача. Основний зміст роботи, всі теоретичні та практичні результати, висновки і дослідження, які представлено до захисту, одержані автором особисто. Роботи [3, 6, 7, 9, 10] опубліковані самостійно. У публікаціях, написаних у співавторстві, автору належать: розробка загальної стратегії зменшення обсягів даних тріангуляційного опису об’єктів [1], розробка та реалізація модуля оптимізації тривимірних моделей об’єктів у складі системи пошуку дефектів за даними комп’ютерної томографії [4, 5], розробка методу обчислення відхилення для контролю якості вихідного тріангуляційного опису об’єктів [2, 8].

Апробація результатів дисертації. Наукові та практичні результати роботи доповідались та обговорювались на:

І, ІІ Міжнародних конференціях молодих науковців "Комп’ютерні системи та інженерія" (м. Львів, 2006-2007р);

ІІІ Internationalconference "AdvancedComputerSystemsandNetworks: DesignandApplication" ACSN-2007 (Lviv, 2007);

V Міжнародній науково-практичній конференції "Комп’ютерні системи в автоматизації виробничих процесів" КСАВП-2007 (м. Хмельницький, 2007);

ІІІ Міжнародній науково-технічній конференції "Сучасні проблеми радіоелектроніки, телекомунікацій та приладобудування" СПРТП-2007 (м. Вінниця, 2007);

І, ІІ міжвузівських науково-технічних конференціях науково-педагогічних працівників "Проблеми та перспективи розвитку економіки і підприємництва та комп’ютерних технологій в Україні" (м. Львів, 2006-2007р).

Публікації. За результатами виконаних досліджень опубліковано 10 наукових праць, в тому числі 4 статті у фахових наукових виданнях із переліку, затвердженого ВАК України.

Обсяг і структура дисертації. Дисертаційна робота складається зі вступу, чотирьох розділів, висновків, викладених на 124 сторінках друкованого тексту, списку використаних джерел (106 найменувань). Робота містить 69 рисунків, 9 таблиць та 4 додатки.

ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі наведено загальну характеристику роботи, обґрунтовано її актуальність, показано зв'язок з науковими програмами, сформульовано мету та завдання дослідження, наукову новизну і практичне значення отриманих результатів. Наведено дані про впровадження та апробацію результатів роботи.

У першому розділі "Аналіз та проблемні задачі зменшення обсягів даних при поданні об'єктів комп’ютерній томографії тріангуляційними сітками" проведено огляд та аналіз галузей застосування систем комп’ютерної томографії, обґрунтовано необхідність розв'язку прикладних задач, пов’язаних із специфікою використання систем комп’ютерної томографії, зокрема, задачу пошуку дефектів у суцільних середовищах та конструкційних матеріалах. Визначено, що для сегментації зображень комп’ютерної томографії, а також їх підтримки САПР, оптимальним способом подання тривимірних об’єктів є тріангуляційні сітки, які дозволяють описувати складні тривимірні поверхні з заданою точністю; мають простий математичний апарат та підтримку їх візуалізації апаратними засобами відеосистеми комп’ютера. Для виділення об’єктів на основі зображень комп’ютерної томографії та опису їх поверхонь тріангуляційними сітками на практиці виконується така послідовність дій (рис.1):

детектування поверхонь – виділення країв об’єктів на томограмах;

сегментація та опис поверхонь – виділення об’єктів та опис їх поверхонь тріангуляційними сітками;

На цьому етапі реальні моделі об’єктів містять велику кількість даних у їх описі, внаслідок чого виникають проблеми, пов’язані з обробкою моделей, обсяги даних для представлення яких перевищують обсяг основної пам’яті комп’ютера, що суттєво сповільнює їх обробку та забезпечення швидкого відображення об’єктів на дисплеї комп’ютера.

Крім того, первинний опис об’єктів є надлишковим, оскільки незалежно від форми об’єктів їх поверхні описуються рівномірною сіткою трикутників. Тому доцільним є зменшення (оптимізація) опису поверхонь – зменшення кількості елементів тріангуляції, що описують поверхні об’єктів так, як показано на рис.1.

Також у розділі проведено аналіз відомих методів зменшення обсягів даних опису тривимірних об’єктів, на основі якого встановлено:

процедура зменшення обсягів даних виконується або в межах наперед заданої кількості трикутників, або в межах заданого відхилення;

залежно від галузі застосування, критичним є час, що затрачається на виконання зменшення обсягів даних, чи збереження максимально можливої якості вихідної моделі;

в деяких випадках важливу роль відіграють атрибути моделі (колір, текстура), коли в інших випадках ними нехтують.

Більшість відомих методів орієнтовані на обробку зображень для комп’ютерної графіки, забезпечують зменшення обсягів даних у межах наперед заданої кількості трикутників та не гарантують повного збереження форми тривимірних об’єктів. Це є їхніми основними недоліками при застосуванні в автоматизованому відтворенні об’єктів за даним комп’ютерної томографії. Тому є необхідність розробки методів зменшення обсягів даних, що забезпечують збереження форми об’єктів в межах заданого відхилення.

У другому розділі "Розробка методу зменшення обсягів даних тріангуляційного опису об’єктів комп’ютерної томографії" на основі особливостей подання об’єктів комп’ютерної томографії запропоновано метод зменшення обсягів даних, що забезпечує збереження форми об’єктів у межах заданого допустимого відхилення. Задачу зменшення обсягів даних тріангуляційного опису об’єктів запропоновано подати таким чином.

Маючи початкову модель об’єкту М, задану тріангуляційною сіткою Т0, що містить N точок, отримати апроксимацію моделі М', тріангуляційною сіткою Тn, таку що:

вона має відхилення d від М не більше заданого значення e

d(M, M') ≤ e;

тріангуляційна сітка Тn має мінімальну кількість вузлів (точок) n,

n = minn(Ti).



Відхиленням у тривимірному просторі для вершини тріангуляції vi, яка є кандидатом на видалення з моделі, прийнято відстань від цієї вершини до площини Pavg – апроксимуючої площини для точок, що лежать в околі vi (рис.2). При оцінці можливості видалення вершини з тріангуляції виконується перевірка рівності d ≤ e, де d– відхилення, що виникає внаслідок видалення vi, та дорівнює відстані від точки до площини, e – задане значення допустимого відхилення. Якщо ця рівність виконується, то вершина видаляється разом із суміжними їй трикутниками.

Для реалізації описаного методу запропоновано виконати таку послідовність кроків:

Обчислити одиничну нормаль апроксимуючої площини

, (1)

де

- зважені нормалі до площин, інцидентних вершиніviтрикутників,
- абсолютна величина вектора
.

Обчислити координати точки апроксимуючої площини

, (2)

де xi, yi, zi, - координати точок в околі, точки vi.

Обчислити відстань від вершини viдо апроксимуючої площини

. (3)

Для перевірки працездатності запропонованого методу розроблено програмне забезпечення зменшення обсягів даних та досліджено його роботу на тестових зображеннях. На рис.3 подано приклад зменшення обсягів даних опису моделі правильного куба (рис.3. а), що містить 56 вершин та 108 трикутників. Модель куба обрано для наочного сприймання одержаних результатів. Використавши запропонований метод, отримано модель куба, що містить 30 вершин та 56 трикутників (рис.3. б).

Рис.3. Зменшення обсягів даних опису моделі правильного куба.

На ребрах куба (рис.3. б) позначено вершини, що є надлишковими для його представлення. Збільшення значення допустимого відхилення зумовлює спотворення форми куба (рис.3. в). Для видалення надлишкових вершин запропоновано використати суму квадратів відстаней від вершини до множини інцидентних їй площин:

на основі рівняння площини Ax+By+Cz+D=0, квадрат відстані від вершини v [xv,yv,zv] до цієї площини визначається як:

dist2(v) =(Axv+Byv+Czv+D) 2; (4)

парі вершин (v1, v2), що утворюють ребро тріангуляційної сітки, поставлено у відповідність множину площин, інцидентних обом вершинам трикутників. Тоді сума квадратів відстаней від вершини v до цієї множини площин дорівнює:

; (5)

відстань від вершини до відповідної їй множини суміжних площин дорівнює нулю:

, (6)

оскільки вершина належить кожній з цих площин. Використавши вирази (5), (6) та підставивши координати вершини v1, отримано:

. (7)

Рівність (7) виконується тоді і тільки тоді, коли інцидентні вершині v1 площини співпадають з площинами, інцидентними вершині v2. В цьому випадку вершина v2 може бути видалена з моделі. Якщо рівність (7) не виконується для вершини v1, то перевіряється її виконання для вершини v2. Якщо рівність (7) не виконується ні для вершини v1, ні для v2, то жодна з вершин v1, v2 не може бути видалена з моделі. Результат роботи методу наведено на рис.3. г. Отримана модель куба містить 8 вершин та 12 трикутників, що є мінімальною кількістю елементів тріангуляції для подання куба та доводить ефективність розробленого методу.