Министерство Образования Республики Таджикистан
Таджикский Технический Университет
имени М.С. Осими
Кафедра «АСОИиУ»
Лабораторная работа №1
На тему:Моделирование датчиков случайных чисел с заданным законом распределения
Выполнила:
ст-т. 3-го курса гр. 2202 Б2
Принял: преподаватель кафедры
Ли И.Р.
Душанбе-2010
Лабораторная работа № 2
Моделирование датчиков случайных чисел с заданным законом распределения
I Цель работы
Целью работы является:
1. Практическое освоение методов моделирования случайных чисел с заданным законом распределения
2. Разработка и моделирование на ПЭВМ датчика случайных чисел с конкретным законом распределения
3. Проверка адекватности полученного датчика
II Теоретические сведения
1. Основные методы моделирования случайных последовательностей с заданным законом распределения
При исследовании и моделировании различных сложных систем в условиях действия помех возникает необходимость в использовании датчиков случайных чисел с заданным законом распределения. Исходным материалом для этого является последовательность x1,x2….xn с равномерным законом распределения в интервале [0,1]. Обозначим случайную величину, распределенную равномерно через ζ(кси).
Тогда равномерно-распределенные случайные числа будут представлять собой независимые реализации случайной величины ζ, которые можно получить с помощью стандартной функции RND(ζ)– программно реализованной на ПЭВМ в виде генератора случайных чисел с равномерным законом распределения в интервале [0,1]. Требуется получить последовательность y1,y2,..yn независимых реализаций случайной величины η, распределенных по заданному закону распределения. При этом закон распределения непрерывной случайной величины может быть задан интегральной функцией распределения:
F(y)= P(ksi y) (1)
или плотностью вероятности
f(y)=F’(y) (2)
Функцииf(y) и F(y) могут быть заданы графически или аналитически.
Для получения случайной величины η с функцией распределения F(y) из случайной величины ζ, равномерно-распределенной в интервале [0,1], используются различные методы. К основным методам моделирования случайных чисел с заданным законом распределения относятся:
- метод обратной функции
- метод отбора или исключения
- метод композиции.
2. Метод обратной функции
Если ζ- равномерно-распределенная на интервале [0,1] случайная величина, то искомая случайная величина может быть получена с помощью преобразования:
η=F-1 (ζ) (3)
Где F-1 (ζ)- обратная функция по отношению к функции распределения F(ζ)
F(y) 1 ζРис 1 Функция распределения F(ζ)
Действительно, при таком определении случайной величины η имеем:
P(η y)=P{F-1(ζ) y}=P{ ζ F(y) }= F(y) (4)
В данной цепочке равенств первое равенство следует из (3), второе из неубывающего характера функций F(ζ) и F-1 (ζ) и третье из равномерного в интервале [0,1] распределения величин ζ.
Таким образом, если задана функция распределения F(y), то для получения случайной последовательности с таким распределением необходимо найти ее обратную функцию.
Для нахождения обратной функции можно использовать два метода: аналитический и графический.
3.Метод отбора или исключения
Данный метод удобнее использовать, если требуемый закон распределения задан плотностью вероятности f(y). В отличии от метода обратной функции метод отбора или исключения для получения одного требуемого случайного числа требует не одного равномерно- распределенного случайного числа, а двух, четырех, шести или более случайных чисел. В этом случае область возможных значений η представляет конечный отрезок (a,b), а плотность вероятности f(y) ограничена сверху значением fmax (Рис.7). Тогда область значений η*и ζ* можно ограничить ступенчатой кривой:
0, если y<ag(y)= fmax, если a y b (25)
0, если y>b
Затем берутся с помощью генератора случайных чисел (RND(ζ)) два равномерно-распределенных числа ζ1 и ζ2 , по которым определяются равномерные на интервале [a,b] независимые величины:
η’=a + (b-a)*ζ1
ζ’=fmax* ζ2 (26)
Где a,b – границы возможных значений случайной величины η,
fmax- максимальное значение функции f(y)(Рис.7)
f(y) g(y)f(y)
ζ
Рис.7 Заданная плотность вероятности
Если ζ’ f(η’) , то η’ принимается в качестве очередной реализации случайной величиныη. В противном случае η’ отбрасывается и берется следующая пара равномерно- распределенных случайных чисел ζ1 и ζ2 . Такая процедура повторяется до тех пор, пока мы не получим требуемого количества случайных чисел с заданной плотностью вероятности.
4.Метод композиции
Метод композиции основывается на представлении плотности вероятности fη (x) по формуле полной вероятности:
fη (x)=
(27)Где H(z)=P(ζ z)– интегральная функция распределения случайной величины ζ;
P(x/z )- условная плотность вероятности.
Переходя к дискретной форме, интеграл заменяется на сумму и тогда получаем
fη (x)=
Pj*fj (x) (28)где
Pj=1(29)fj(x) -условная плотность вероятности
Таким образом, для любой заданной плотности вероятности ее фигура единичной площади, ограниченной осью x и кривой fη(x), разбивается на произвольное число простых не пересекающихся частей gj (i=1,k),с площадями Pj(j=1,k), (Рис.8)
Рис.8Разбивка плотности вероятности на отдельном участке
fη(x)g2 (Р2)g3 (Р3)
xg1 (Р1)