Смекни!
smekni.com

Моделирование датчиков случайных чисел с заданным законом распределения (стр. 1 из 2)

Министерство Образования Республики Таджикистан

Таджикский Технический Университет

имени М.С. Осими

Кафедра «АСОИиУ»

Лабораторная работа №1

На тему:Моделирование датчиков случайных чисел с заданным законом распределения

Выполнила:

ст-т. 3-го курса гр. 2202 Б2

Принял: преподаватель кафедры

Ли И.Р.

Душанбе-2010


Лабораторная работа № 2

Моделирование датчиков случайных чисел с заданным законом распределения

I Цель работы

Целью работы является:

1. Практическое освоение методов моделирования случайных чисел с заданным законом распределения

2. Разработка и моделирование на ПЭВМ датчика случайных чисел с конкретным законом распределения

3. Проверка адекватности полученного датчика

II Теоретические сведения

1. Основные методы моделирования случайных последовательностей с заданным законом распределения

При исследовании и моделировании различных сложных систем в условиях действия помех возникает необходимость в использовании датчиков случайных чисел с заданным законом распределения. Исходным материалом для этого является последовательность x1,x2….xn с равномерным законом распределения в интервале [0,1]. Обозначим случайную величину, распределенную равномерно через ζ(кси).

Тогда равномерно-распределенные случайные числа будут представлять собой независимые реализации случайной величины ζ, которые можно получить с помощью стандартной функции RND(ζ)– программно реализованной на ПЭВМ в виде генератора случайных чисел с равномерным законом распределения в интервале [0,1]. Требуется получить последовательность y1,y2,..yn независимых реализаций случайной величины η, распределенных по заданному закону распределения. При этом закон распределения непрерывной случайной величины может быть задан интегральной функцией распределения:

F(y)= P(ksi

y) (1)

или плотностью вероятности

f(y)=F’(y) (2)

Функцииf(y) и F(y) могут быть заданы графически или аналитически.

Для получения случайной величины η с функцией распределения F(y) из случайной величины ζ, равномерно-распределенной в интервале [0,1], используются различные методы. К основным методам моделирования случайных чисел с заданным законом распределения относятся:

- метод обратной функции

- метод отбора или исключения

- метод композиции.

2. Метод обратной функции

Если ζ- равномерно-распределенная на интервале [0,1] случайная величина, то искомая случайная величина может быть получена с помощью преобразования:

η=F-1 (ζ) (3)

Где F-1 (ζ)- обратная функция по отношению к функции распределения F(ζ)

F(y)

1

ζ

0 ηy

Рис 1 Функция распределения F(ζ)

Действительно, при таком определении случайной величины η имеем:

P

y)=P{F-1(ζ)
y}=P{ ζ
F(y) }= F(y) (4)

В данной цепочке равенств первое равенство следует из (3), второе из неубывающего характера функций F(ζ) и F-1 (ζ) и третье из равномерного в интервале [0,1] распределения величин ζ.

Таким образом, если задана функция распределения F(y), то для получения случайной последовательности с таким распределением необходимо найти ее обратную функцию.

Для нахождения обратной функции можно использовать два метода: аналитический и графический.

3.Метод отбора или исключения

Данный метод удобнее использовать, если требуемый закон распределения задан плотностью вероятности f(y). В отличии от метода обратной функции метод отбора или исключения для получения одного требуемого случайного числа требует не одного равномерно- распределенного случайного числа, а двух, четырех, шести или более случайных чисел. В этом случае область возможных значений η представляет конечный отрезок (a,b), а плотность вероятности f(y) ограничена сверху значением fmax (Рис.7). Тогда область значений η*и ζ* можно ограничить ступенчатой кривой:

0, если y<a

g(y)= fmax, если a

y
b (25)

0, если y>b

Затем берутся с помощью генератора случайных чисел (RND(ζ)) два равномерно-распределенных числа ζ1 и ζ2 , по которым определяются равномерные на интервале [a,b] независимые величины:

η=a + (b-a)*ζ1

ζ’=fmax* ζ2 (26)

Где a,b – границы возможных значений случайной величины η,

fmax- максимальное значение функции f(y)(Рис.7)

f(y)
g(y)

fmax

f(y)

ζ


aηb

Рис.7 Заданная плотность вероятности

Если ζ’

f’) , то η принимается в качестве очередной реализации случайной величиныη. В противном случае η отбрасывается и берется следующая пара равномерно- распределенных случайных чисел ζ1 и ζ2 . Такая процедура повторяется до тех пор, пока мы не получим требуемого количества случайных чисел с заданной плотностью вероятности.


4.Метод композиции

Метод композиции основывается на представлении плотности вероятности fη (x) по формуле полной вероятности:

fη (x)=

(27)

Где H(z)=P

z)– интегральная функция распределения случайной величины ζ;

P(x/z )- условная плотность вероятности.

Переходя к дискретной форме, интеграл заменяется на сумму и тогда получаем

fη (x)=

Pj*fj (x) (28)

где

Pj=1(29)

fj(x) -условная плотность вероятности

Таким образом, для любой заданной плотности вероятности ее фигура единичной площади, ограниченной осью x и кривой fη(x), разбивается на произвольное число простых не пересекающихся частей gj (i=1,k),с площадями Pj(j=1,k), (Рис.8)


Рис.8Разбивка плотности вероятности на отдельном участке

fη(x)

g11)

g22)g33)

x

g11)