Смекни!
smekni.com

Моделювання процесу обробки сигналів датчика у вихровому потоковимірювачі (стр. 4 из 16)

(2.11)

При цьому коефіцієнт кореляції між вказаним значенням наближається до 0,995. Зв’язком інших гармонік зі значенням енергії обертаючого потоку у точці вимірювань можна знехтувати з достатньою точністю. Для вихрових генераторів з тілами обтікання також характерний лінійний зв’язок між частотою вихороутворення і швидкістю потоку у точці обтікання.

Коефіцієнт кореляції для третьої гармоніки наближається до 0,99. У випадку використання тіл обтікання з перпендикулярними отворами коефіцієнт кореляції для першої гармоніки складає 0,98 – 0,99 [1].

Можна зробити деякі висновки про інформаційних характеристиках вихрових генераторів.

Вихрові генератори з тілом обтікання у широкому діапазоні густин окремо для газів та рідини забезпечують лінійну функціональну залежність між частотою однієї з гармонік та значенням витрат в точці обтікання. Зміна в’язкості середовища, яке вимірюють, робить відчутній вплив на значення коефіцієнта кореляції, тому цей тип вихрового генератору знайде, переважно, застосування для вимірювань у газових середовищах.

Амплітуда гармоніки вихідного сигналу, по якій відбувається вимірювання, залежить від енергії вихрової формації. В процесі вимірювання у діапазоні змін швидкості потоку амплітуда змінюється не дуже сильно.

Характерна особливість, яка властива п’єзоелектричним перетворювачам. В момент відкриття та закриття клапану відбувається зміна тиску в системі, що призводить до появи на обкладинках п’єзоелементу статичного заряду. Перезаряд вхідного конденсатору створює на виході підсилювача декілька імпульсів завади, від яких можна позбавитися за допомогою більш ретельного налагодження приймачів перетворювачів тиску.


3 Обчислювальні експерименти з різними моделями завад та фільтрів

Межі вимірювань при використанні вихрових потоковимірювачів кінцеві. Тому що у них частота вихорів при зниженні швидкості зменшується разом з суттєвим зменшенням амплітуди сигналу датчика [3]. Так, експериментально отримана залежність між швидкістю потоку й частотою сформованих імпульсів виглядала як на рисунку 3.1:
F

Рисунок 3.1 - Залежність частоти імпульсів від швидкості потоку.

Підставою для припинення вимірів є досягнення допустимого рівня похибки, що у свою чергу можна здійснити, оцінюючи кількість “зайвих” сформованих імпульсів при вимірюванні частот сигналу низького рівня.

З наведеного вище рисунка видно, що існує певний рівень, при досягненні якого відбувається нарощування зайвих імпульсів. При низьких частотах і малих рівнях сигналу шуми перебувають в області верхніх вимірюваних частот і фільтрація шумів може шкодити корисним сигналам в області верхніх частот діапазону вимірів, таким чином, коли потік стає ламінарним, спостерігається нагромадження зайвих імпульсів (помилки внаслідок відносного збільшення рівня шуму над корисним сигналом).

При високих частотах, коли частота сигналу більше частоти шуму, може виникнути ситуація, коли амплітуда шуму буде більше амплітуди сигналу. У цьому випадку також будуть помилки.

Вважаємо за можливе при відповідному ускладненні приладу визначати ситуацію, коли варто припинити рахувати імпульси і сповістити користувача або супутні системи про це.

Вираз для обчислення математичного очікуванної кількості нулів для суми фіксованого синусоїдального сигналу й нормального випадкового шуму, запропонований Райсом [4] і отриманий пізніше Бендатом іншим шляхом, за свідченням Бендата «занадто складний для практичних цілей і не узгодиться з результатами крім як у нецікавому випадку, коли синусоїдальна складова відсутня».

У вираз входить інтеграл, що може бути обчислений лише чисельними методами. Для окремих випадків, наприклад, для білого шуму з обмеженою смугою частот, Бендат [5] пропонує вираз:

, (3.1)

де

- кругова частота;

p – відношення сигналу до шуму;

a

1 і b
1 константи такі що
, де
- частота синусоїдального сигналу,
- смуга частот, які пропускаються фільтром.

У даній формулі частота синусоїди вважається постійною.

Трохи іншим аспектам присвячена робота [6]. Кедем у своїй роботі [7] застосовує до рішення цього питання спектральний аналіз, а в роботі [8] робить аналіз кількості перетинань методом вищих порядків (Higher Order Crossings). Ідея методу полягає в тому, щоб поєднувати підрахунок кількості переходів через нуль із фільтрами. Пізніше Кедем разом з Барнеттом визначали число переходів через нуль у добутках гаусових процесів [9].

В поданому розділі була проведена робота по визначенню і порівнянню оцінок кількості переходів через нуль, отриманих аналітичним шляхом і шляхом обчислювального експерименту.

Для перевірки виконання на практиці формули (3.1) був проведений експеримент на ПК. Для того, щоб надалі використати отриману модель генератора для розробки алгоритму обробки сигналу.

Проведені розрахунки більш наближені до реальних датчиків.

Параметри, які є незмінними у всіх експериментах наведені нижче:

- мінімальна кількість точок дискретизації на період синусоїди 10;

- мінімальна частота корисного сигналу 20 Гц;

- максимальна частота корисного сигналу 500 Гц;

- довжина випадкової реалізації 4096;

3.1 Обчислювальні експерименти без урахування квадратичної залежності амплітуди від частоти

3.1.1 Фільтрація ковзкого згладжування

Генератором випадкового шуму був обраний стандартний генератор псевдовипадкових чисел c нормальним розподілом у MathCad2001 і генератор псевдовипадкових чисел на зсувних регістрах c зворотним зв'язком, що використовує поліном [10]:

, (3.1)

де

- значення самого поліному;

n – значення відповідних розрядів, де n – номер розряду у вхідному числі.

Були визначені характеристики отриманих псевдовипадкових послідовностей.

До цього шуму був доданий корисний сигнал, що являє собою синусоїду. Формула (1) призначена для обмеженої смуги частот, тому отриману нами суміш шуму й корисного сигналу потрібно пропустити через фільтр.

Для фільтрації обраний метод ковзного згладжування з двома проходами. У першому проході вибірку здійснювали по n=8 елементи, а в другому по n =6.

Потім для отриманої суміші шуму й корисного сигналу в процесі експерименту був проведений підрахунок кількості переходів через нульовий рівень (зі співвідношенням сигнал/шум, що дорівнює: 0.1, 0.5, 1, 5).

На рисунку 3.1 показані залежності, отримані з використанням стандартного генератора псевдовипадкових чисел і на рисунку 3.2 - з використанням генератора псевдовипадкових чисел на ЗРЗЗ.

З використанням формули 3.1 були отримані залежності кількості переходів через нульовий рівень від частоти (при таких же співвідношеннях сигнал/шум). Цей графік подано на рисунку 3.3.

Експеримент з використанням стандартного генератору псевдовипадкових чисел c нормальним розподілом у MathCad2001 був проведений з наступними параметрами:

максимальна амплітуда синусоїди 2048

- амплітуда синусоїди 1.5 В (ефективне значення амплітуди);

- амплітуда шуму (середньоквадратичне відхилення) обиралася в залежності від відношення сигнал-шум та діючого значення амплітуди шуму;

Експеримент з використанням генератора псевдовипадкових чисел на ЗРЗЗ був проведений з наступними параметрами:

- максимальна амплітуда шуму 2048

- амплітуда синусоїди 1.5 В (ефективне значення);

- амплітуда синусоїди (ефективне значення) обиралася в залежності від відношення сигнал-шум та середньоквадратичного відхилення шуму.


Рисунок 3.1 - Залежність кількості перетинань нульового рівня від частоти отримані з використанням стандартного генератора псевдовипадкових чисел.

Рисунок 3.2 - Залежність кількості перетинань нульового рівня від частоти отримані з використанням генератора псевдовипадкових чисел на ЗРЗЗ.

Рис. 3.3 - Залежність кількості перетинань нульового рівня від частоти, отримана з використанням формули 3.1.