А та В всі не корельовано,
- математичне відхилення, та - дисперсія.Взагалі, приймаємо
- підкрашений стаціонарний шум з нульовим середнім значенням і дисперсією , незалежною від А та В. Шум, приймаємо, має абсолютно неперервну спектральну функцію зі спектральною щільністю , . Для нашої мети ми приймаємо, що {Zt} – Гаусів процес. Але Гаусовість не є необхідною для параметричної фільтрації за методом Яковітца [16]. Також покажемо, що частота для нас є низка упорядкованих констант в межах (0, ) [15], , (4.2)Загальна задача це визначити частоти
, використовуючи кінцеву довжину реалізації (спостереження) з часового ряду Z1, Z2, ...,ZN.Іншими словами, наша основна стратегія це фільтрувати спостереження Z1, Z2, ...,ZN за допомогою фільтру з параметричного сімейства лінійних фільтрів, спостерігати статистику перетинів нуля виходу фільтру, а потім обирати інший фільтр (зміною параметра) з сімейства на базі статистики, що спостерігається. При деяких умовах ця ітеративна процедура сходиться і точне значення частоти може бути отримане.
4.2 Очікуване число перетинів нуля Гаусова процесу
Нижче подано формули для визначення очікуваної кількості перетинів нуля Гаусова процесу. Наведемо обидва випадки: безперервного та дискретного часу.
Якщо стаціонарний Гаусів процес {Zt}, для
, з нормалізованою автокореляційною функцією має дуже гладку форму, що середнє число перетинів нуля за одиницю часу, дорівнює за формолою Райса [4]. , (4.3)де D – число перетинів нуля у реалізації {Zt} для t у одиничному інтервалі [0, 1];
є друга похідна нормалізованої автокореляційної функції від {Zt} у нулі.Ялвісакер в 1965 довів формулу Райса строго при пом’якшуючих умовах і показав, що очікувана кількість перетинів нулів скінченна якщо, і тільки якщо, автокореляційна функція двічі може бути диференційована в точці
.Аналогічна формула для дискретного часу, для процесу з нульовим середнім, для стаціонарної Гаусової послідовності {Zк},
була отримана багатьма авторами [7] і виглядає як: , (4.4)або, еквівалентно, в інверсній формі:
, (4.5)де D1 – число змін знаків або перетинів нуля у реалізаціях Z1, ...,ZN;
- кореляція послідовності {Zк}; - очікувана число перетинів нуля при дискретному часі.Ця формула (4.5) має назву – косинусна формула. Спостерігаємо, що через стаціонарність очікуване число перетинів нуля
- не залежить від N. Взагалі повинен бути кореляцією, див. Кедем (1991). Оскільки лінійна фільтрація Гаусова процесу дає результат Гаусів процес, косинусна формула придатна для фільтрованого процесу, де кореляційний коефіцієнт і число перетинів нуля фільтрованого процесу використано у косинус ній формулі (4.5). Для точності, нехай буде вихід у момент t з лінійного з незмінними у часі параметрами фільтру La, що був застосований до процесу {Zt}. Використовуючи косинусну формулу (4.5) і спектральне подання для стаціонарних процесів, коефіцієнти кореляції першого порядку фільтрованого процесу отримаємо вираз [15]: , (4.6)де Da – число перетинів нуля в {La(Z)1, ...,La(Z)N,};
- функція спектрального розподілу процесу {Zt}; - квадрат коефіцієнту передачі фільтру La.Перетини нуля Da фільтрованого часового ряду називаємо “Перетини вищого порядку” або НОС [7].
Для даного з нульовим середнім часового ряду {Zк} і сімейства параметричних фільтрів з пространством параметрів
, , відповідає НОС сімейство помічено як .4.3 НК – алгоритм. Параметричний фільтр АR(1)
Ітеративна схема, наведена нижче, ілюструє метод для виявлення однієї частоти у Гаусовому шумі. Наша модель це (4.1) з р = 1 та
білим Гаусовим шумом. Алгоритм має собою наступні гарантії збіжності НОС послідовності до частоти у нашій моделі. Сімейство фільтрів це експоненціальний фільтр, що згладжує, або авторегрсійний порядку 1, АR(1)-фільтр.Фільтр АR(1), відомий як (
- фільтр) визначається операцією: , (4.7)або еквівалентно в його рекурсивній формі:
, (4.8)де квадрат коефіцієнта передачі фільтру
заданий виразом: (4.9)де
Параметричний фільтр АR(1) має фундаментальні властивості відносно білого шуму [15].
(4.10)Тому НОС послідовність
та на практиці емпіричні числа або ті, що спостерігаються, перетинів нуля обчислюються по формулі Е[Dak] на кожній стадії в ітерації і шумовий процес не обов’язково повинен бути білим – він повинен бути з неперервним спектром. На рисунку 4.1 можна побачити як підстроюється параметр в залежності від вхідного сигналу у конкретному випадку при використанні даного алгоритму на практиці.Рисунок 4.1 - Зміна параметра
на протязі двадцяти ітерацій.На рисунку 4.2 показано, як в процесі двадцяти ітерацій змінюється спектр сигналу. Можна побачити, як коефіцієнт передачі, рівномірний по всіх частотах, поступово переходить у бік низьких частот, тим самим виділяючи потрібну частоту корисного сигналу.