Смекни!
smekni.com

Моделювання процесу обробки сигналів датчика у вихровому потоковимірювачі (стр. 7 из 16)

- частота синусоїди дорівнює 20.0784 Гц;

- загальна довжина вхідної послідовності 16 секунд;

- кількість перетинів нуля вхідної послідовності 639.

Для проведення експерименту по виявленню корисного сигналу на фоні завади, була використана стандартна функція пакету Mathcad 2001 для отримання шуму з потрібними параметрами. Перед використанням алгоритму HK з фільтру AR(1) попередньо синусоїду з відомими параметрами змішуємо з отриманим шумом. Далі, під час проведення експерименту, можна простежити, як цей алгоритм знаходить у зашумованому сигналі потрібну частоту. Цей процес на протязі двадцяти ітерацій, з новим обчисленням параметру

після проходження усієї вхідної послідовності, можна спостерігати на рисунку 4.3.

Рисунок 4.3 - Пошук потрібної кількості перетинів нульового рівня вхідним сигналом. Nі - номер ітерації алгоритму, N – кількість перетинів нульового рівня.


Зміну поточної кількості перетинів нульового рівня вхідним сигналом, на протязі двадцяти ітерацій, з новим обчисленням параметру

після кожного інтервалу вхідної послідовності, можна спостерігати на рисунку 4.4.

Рисунок 4.4 - Пошук потрібної кількості перетинів нульового рівня вхідним сигналом.

На рисунку 4.4 спостерігаються підвищення поточної кількості перетинів нульового рівня вхідним сигналом рівномірно через однакові проміжки часу. Це пов’язано з тим, що алгоритм починає проходження вхідної послідовності з початку, а історія обчислень була накопичена на інтервалах в кінці послідовності і послідовність була змінена. Тому відбувається швидке підстроювання параметрів під нові інтервали.

З метою визначення ефективності даного алгоритму при обробці сигналу, в якому ефективно значення шуму відносно сигналу дорівнює, більше та менше. Для зручності співвідношення сигнал/завада обираємо наступними: 2, 1, 0,5. Також паралельно провадилися експерименти з ініціалізацією початкового значення параметру

наступними значеннями 0,1, 0,5, 0,9, -0,1, -0,5, -0,9.

За для зручності аналізу отриманих результатів було прийнято рішення подавати результати на двовимірному графіку через те, що на тривимірному графіку важко порівнювати різні експерименти. Кожен графік буде подавати інформацію про експерименти з одним співвідношення але з різними початковими значеннями параметру

.

Описані експерименти проводилися для двох різновидів алгоритмів HK з використанням фільтру сімейства AR(1).

У першому варіанті алгоритму проводилася зміна поточної кількості перетинів нульового рівня вхідним сигналом, на протязі двадцяти ітерацій, з новим обчисленням параметру

після кожного інтервалу вхідної послідовності.

У другому варіанті алгоритму проводилася зміна поточної кількості перетинів нульового рівня вхідним сигналом, на протязі двадцяти ітерацій, з новим обчисленням параметру

після проходження усієї вхідної послідовності.

Для отримання моделі завади була використана стандартна функція пакету Mathcad 2001 для отримання шуму з потрібними параметрами. Її амплітуда при генерації задавалася за допомогою стандартного математичного відхилення. Для порівняння амплітуди синусоїди з завадою використовувалося діюче значення амплітуди сигналу синусоїди.

На рисунку 4.5 наведені результати числових експериментів проведених з наступними початковими умовами та початковими ініціалізаціями параметрів:

- не в кожному інтервалі відбувається обчислення коефіцієнту а;

- початкове значення коефіцієнту

ініціалізується наступними значеннями: 0,1, 0,5, 0,9, -0,1, -0,5, -0,9;

- співвідношенні сигнал/шум було обрано наступним Soot = 0,5.


Рисунок 4.5 - Залежність кількості перетинів нульового рівня від частоти. Використаний генератор псевдовипадкових чисел з пакету Mathcad 2001.

Експерименти з іншими параметрами наведені в додатку А на рисунках А.1 та А.2.

На рисунку 4.6 наведені результати числових експериментів проведених з наступними початковими умовами та початковими ініціалізаціями параметрів:

- в кожному інтервалі відбувається обчислення коефіцієнту а;

- початкове значення коефіцієнту

ініціалізується наступними значеннями: 0,1, 0,5, 0,9, -0,1, -0,5, -0,9;

- співвідношенні сигнал/шум було обрано наступним Soot = 0.5.


Рисунок 4.6 - Залежність кількості перетинів нульового рівня від частоти.

Використаний генератор псевдовипадкових чисел з пакету Mathcad 2001.

На рисунку 4.7 наведене у збільшеному масштабі результати попереднього експерименту. Це було зроблено для того, щоб більш детально розглянути момент в роботі алгоритму HK з використанням фільтру сімейства AR(1), коли проводиться зміна поточного кількості перетинів нульового рівня вхідним сигналом, на протязі двадцяти ітерацій, з новим обчисленням параметру

після кожного інтервалу вхідної послідовності. Це потрібно для щоб детально показати які стрибки відбуваються під час переходу обробки вхідного сигналу з кінця на початок і як їх амплітуда залежить від обирання початкового значення параметру
.

Рисунок 4.7 - Залежність кількості перетинів нульового рівня від частоти.

Використаний генератор псевдовипадкових чисел з пакету Mathcad 2001.

Експерименти з іншими параметрами наведені в додатку А на рисунках А.3 та А.4.

З проведених експериментів можна зробити висновки стосовно обирання початкового значення параметру

для отримання потрібної частоти за найменшу кількість ітерацій, ефективності двох типів алгоритмів HK з використанням фільтру сімейства AR(1), швидкості знаходження потрібної частоти в залежності від співвідношення сигнал/шум.

Висновки такі:

- як і очікувалося, при збільшенні співвідношення сигнал/шум швидкість сходження алгоритму до конкретного значення збільшується;

- найкращі результати були отримані при використанні початкового значення

= 0.9;

- результати використання обох алгоритмів НК приблизно однакові.

4.4 Параметричний фільтр МА(1)

Фільтр МА(1) задовольняє фундаментальній властивості відносно білого шуму (4.10). МА(1) – сімейство подібно до

- фільтру.

Нехай наша модель буде (4.1) з {Zt}, стаціонарною з нульовим середнім Гаусовими часовими рядами, визначеними як:

, (4.11)

де

, ми обмежуємо
для зручності.

Вважаємо сімейство {Lr} ковзного згладжування першого порядку МА(1), фільтрів , що індексується параметром r,

і визначається як:

, (4.12)

і піднесений до квадрату коефіцієнт передачі

є

, (4.13)

де

,

Це сімейство складається з простого з імпульсним відкликом фільтром, який демонструє характеристики фільтру нижніх частот для відповідних значень параметра r, який позитивний і демонструє характеристики фільтру високих частот для негативних значень параметру.

Фундаментальна властивість вимагає щоб [15]:


, (4.14)

оскільки нам потрібно щоб шум був білий. Але обчислення невласного інтегралу дає [15]:

, (4.15)

Таким чином нам потрібна репараметризація. Для отримання ре параметризації, яка задовольняє фундаментальній властивості, водимо параметр:

(4.16)

та роз’язуємо відносно r:

(4.17)