Смекни!
smekni.com

Моделювання та методи обробки кардіоінтервалограм при фізичних навантаженнях (стр. 2 из 5)

Особистий внесок здобувача. Усі результати, які становлять основний зміст дисертаційної роботи, автор отримав особисто. У наукових працях, опублікованих у співавторстві, автору дисертаційної роботи належить: у [1] – побудова математичної моделі та статистична обробка КІГ; у [2] – проведення імітаційного експерименту та визначення похибок імітаційного моделювання; у [3] – проведення порівняльного аналізу методів дослідження КІГ та їх класифікація в стані спокою та при фізичних навантаженнях; у [4] – зменшення розмірності вектора діагностичних ознак за щільністю розподілу шляхом апроксимації гістограм кривими Пірсона; [6] – обґрунтування конструкції математичної моделі КІГ при фізичних навантаженнях; [7] – проведення імітаційного експерименту та визначення похибок імітаційного експерименту; [8] – обґрунтування діагностичних ознак за оцінкою математичного сподівання; [9] – класифікація та порівняльний аналіз існуючих математичних моделей, діагностичних ознак та методів їх оцінювання; [10] – уточнення типу детермінованої складової математичної моделі КІГ з урахуванням фізичного навантаження; [12] – обґрунтування вибору математичної моделі та методу імітаційного моделювання КІГ при фізичних навантаженнях.

Апробація результатів дисертації. Результати дисертаційної роботи доповідались на шостій, сьомій, восьмій, дев’ятій, десятій науково-технічних конференціях Тернопільського державного технічного університету імені Івана Пулюя (Тернопіль 2002, 2003, 2004, 2005, 2006 р.), VI міжнародній науково-практичній конференції „Наука і освіта ’2003” (Дніпропетровськ – Мелітополь 2003 р.), міжнародній науково-практичної конференції „Дні науки ’2005” (Дніпропетровськ-Бєлгород), всеукраїнській науково-практичної конференції “Медична інформатика - 2005” Тернопільського державного медичного університету ім. І.Я. Горбачевського (Тернопіль), наукових семінарах кафедри комп’ютерних наук та кафедри радіокомп’ютерних систем Тернопільського державного технічного університету імені Івана Пулюя.

Публікації. Основні результати, отримані в дисертації, опубліковано в 13 наукових працях, 5 з них – статті у наукових фахових виданнях (зокрема 1 – без співавторів), 8 – тези доповідей науково-технічних конференцій.

Структура і обсяг дисертації. Дисертація складається із вступу, чотирьох розділів, висновків, списку використаних джерел із 108 найменувань, містить 35 рисунків, 4 таблиці, 9 додатків. Повний обсяг дисертації складає 178 сторінок, основний зміст викладено на 112 сторінках.


ОСНОВНИЙ ЗМІСТ

У вступі обґрунтовано актуальність теми дисертації, відзначено зв’язок з науковими темами, сформульовано мету і задачі дослідження, показано наукову новизну отриманих результатів, їх практичне значення, також розглянуто питання апробації результатів дисертації та їх висвітлення у друкованих працях.

У першому розділі на основі аналітичного огляду літературних джерел проведено класифікацію та порівняльний аналіз існуючих математичних моделей, діагностичних ознак та методів їх оцінювання, що лежать в основі сучасних комп’ютерних систем діагностики за КІГ, принцип формування якої з електрокардіографічного сигналу зображено на рис. 1.

Виходячи із необхідності систематизації та впорядкування відомостей фізичного, математичного та технічного характеру, що стосуються моделювання та аналізу КІГ, автором окреслено нову науково-технічну область, шляхом введення поняття кардіоінтервалометрії. Кардіоінтервалометрія – це область кардіометрії, що охоплює широкий спектр проблем технічного та фізико-математичного характеру (а не медико-біологічного), науково-технічними проблемами якої є: побудова математичних моделей, вибір діагностичних ознак, обґрунтування алгоритмів обробки КІГ для проведення діагностики адаптивно-регулятивних механізмів організму; створення алгоритмів функціонування систем діагностики за КІГ; створення методів комп’ютерного імітаційного моделювання КІГ та її перетворень в технічних системах; розробка інформаційно-вимірювальних діагностичних систем за КІГ.

Проведений порівняльний аналіз відомих математичних моделей КІГ та критичний аналіз можливостей їх застосування для моделей КІГ при фізичних навантаженнях показав, що існуючі моделі мають вагомі недоліки, а тому існує об’єктивна необхідність побудови нової математичної моделі КІГ з урахуванням фізичних навантажень та розробки методів її обробки і вибору діагностичних ознак.

Враховуючи специфіку задач кардіоінтервалометрії та особливості зміни тривалостей кардіоінтервалів при фізичних навантаженнях, сформульовано вимоги до математичної моделі КІГ, що запропонована в дисертаційній роботі.

У другому розділі ґрунтуючись на особливостях формування, факті нестаціонарного (перехідного) характеру КІГ при фізичних навантаженнях (рис. 2), а також властивій стохастичності кардіоінтервалів, побудовано нову математичну модель КІГ при фізичних навантаженнях у вигляді суми дискретної детермінованої функції та стаціонарної лінійної випадкової послідовності. Розглянуто характеристики запропонованої математичної моделі. Запропоновано на основі розробленої моделі як діагностичні ознаки для прийняття рішень щодо адаптивно-регулятивних можливостей організму людини використати імовірнісні характеристики КІГ: математичне сподівання, кореляційну функцію та щільність розподілу.

Як показали результати проведених досліджень, при дії на організм людини фізичного навантаження тривалості кардіоінтервалів починають зменшуватися до певного рівня, а потім в процесі зняття фізичного навантаження зростають протягом деякого часу до попереднього рівня (стан відновлення). Це явище вимагає врахування нестаціонарності, перехідного характеру у величинах тривалостей кардіоінтервалів в математичній моделі КІГ при фізичних навантаженнях.

Враховуючи наведені вище міркування, математичну модель КІГ при фізичних навантаженнях подано у вигляді

(1)

де

– деяка дискретна детермінована функція, яка відображає динаміку зміни (тренд) тривалостей кардіоінтервалів КІГ;

– стаціонарна лінійна випадкова послідовність, що враховує випадковий характер змін (флуктуацій) тривалостей кардіоінтервалів КІГ та яку подано у вигляді

(2)

де

– невипадкова функція (ядро зображення (2)) двох дискретних аргументів, відносно якої виконується нерівність

,

– породжуючий білий шум з дискретним часом, математичне сподіванням якого рівне нулю.

Зауважимо, що у випадку реєстрації КІГ у стані спокою (без фізичних навантажень), її моделлю також буде випадковий процес (1) причому

.

Діагностичними ознаками при визначенні адаптивно-регулятивних можливостей організму людини є ймовірнісні характеристики (математичне сподівання, кореляційна функція та щільність розподілу) процесу

. Так, математичне сподівання процесу (1) рівне:

(3)

але оскільки

, то

(4)

Отже, для визначення математичного сподівання

достатньо знайти функцію
.

Кореляційна функція процесу (1)

(5)

Тобто, кореляційна функція випадкового процесу (1) рівна кореляційній функції стаціонарної лінійної випадкової послідовності

.

Одновимірна функція щільності розподілу

стаціонарної компоненти
не змінюється при зсуві за аргументом
, що можна подати так:

. (6)

Таким чином, діагностичними ознаками при проведенні діагностики стану адаптивно-регулятивних можливостей організму при фізичних навантаженнях на основі запропонованої в роботі моделі будуть математичне сподівання, що рівне детермінованій функції f(k), кореляційна функція

та функція щільності розподілу
стаціонарної компоненти
моделі (1).

У третьому розділі, обґрунтовано методи статистичного оцінювання діагностичних ознак, а саме, коефіцієнтів розкладу оцінки математичного сподівання та оцінки кореляційної функції КІГ у ряди за ортогональними поліномами Чебишева, а також параметрів кривих Пірсона для оцінювання щільності розподілу, що дало можливість зменшити (оптимізувати) розмірність вектора діагностичних ознак.