Смекни!
smekni.com

Моделювання та методи обробки кардіоінтервалограм при фізичних навантаженнях (стр. 3 из 5)

Виходячи із вище запропонованих діагностичних ознак, наведено методи їх статистичного оцінювання.

Оскільки статистичне оцінювання математичного сподівання здійснюється тільки за однією реалізацією КІГ, а КІГ при фізичних навантаженнях не є стаціонарною, то оцінювання математичного сподівання, що дорівнює детермінованій складовій

моделі (1), здійснено на основі методу найменших квадратів.

У результаті оцінювання отримано послідовність значень, обсяг яких дорівнює кількості відліків КІГ. Зменшення розмірності діагностичного простору здійснено шляхом наближеного представлення функції

у вигляді ряду

, (7)

де

– спектральні коефіцієнти функції
в ортогональному базисі
.

У дисертаційній роботі за діагностичні ознаки прийнято декілька перших коефіцієнтів із сукупності

ортогонального розкладу оцінки математичного сподівання в ряди за ортогональними поліномами дискретного аргументу Чебишева, Кравчука, Лагера та за дискретними тригонометричними функціями. На основі аналізу результатів розкладу оцінки математичного сподівання КІГ в ряди за цими ортогональними базисами, виходячи з критерію мінімуму кількості членів ряду, які складають не менше 95% від повної енергії сигналу, встановлено, що за цим критерієм найменша кількість коефіцієнтів (3-4 коефіцієнти ряду) потрібно при розкладі в ряд за ортогональними поліномами Чебишева. Отже, діагностичними ознаками на основі розкладу оцінки математичного сподівання в ряди за дискретними ортогональними поліномами вибрано коефіцієнти ряду поліномів Чебишева.

Враховуючи отримані результати розкладу оцінки математичного сподівання, математичну модель (1) уточнено і подано у вигляді:

(8)

де

– коефіцієнти ряду Чебишева;

та
– узагальнені коефіцієнти, що дорівнюють
та

– узагальнений степінь.

У дисертаційній роботі побудовано гістограми стаціонарної компоненти (2) математичної моделі КІГ при фізичних навантаженнях та здійснено апроксимацію щільності розподілу КІГ системою кривих Пірсона, які визначаються як розв’язок диференціального рівняння

, (9)

де

,
- дійсні параметри, що повністю характеризують форму (тип) кривої розподілу. Для характеристики стану адаптивно-регулятивних можливостей організму запропоновано використовувати нові діагностичні ознаки – параметри диференціального рівняння (9). Приклад побудови кривої Пірсона наведено на рис. 4.

Враховуючи ергодичність послідовності (2), статистичне оцінювання кореляційної функції здійснювалось згідно виразу

. (10)

Для зменшення діагностичного простору здійснено розклад оцінки кореляційної функції в ряд

, (11)

де

- спектральні коефіцієнти кореляційної функції
в ортогональному базисі
.

В дисертаційній роботі як діагностичні ознаки за оцінкою кореляційної функції розглянуто коефіцієнти ортогональних розкладів цих оцінок в ряди за ортогональними поліномами дискретного аргументу Кравчука, Лагера, Чебишева та за дискретними тригонометричними функціями. Враховуючи енергетичний критерій, як і у випадку розкладу оцінки математичного сподівання в ряди, встановлено, що для представлення оцінки кореляційної функції стаціонарної компоненти (2) достатньо 15 перших коефіцієнтів ряду Чебишева. Таким чином, запропоновано як діагностичні ознаки за оцінкою кореляційної функції використовувати коефіцієнти ряду поліномів Чебишева.

Обгрунтовано метод прийняття рішень при діагностиці адаптивно-реглятивних механізмів організму за КІГ на основі аналізу коефіцієнтів розкладу оцінки математичного сподівання та оцінки кореляційної функції у ряди за ортогональними поліномами Чебишева, коефіцієнтів кривих Пірсона на основі критерію Неймана-Пірсона та критерію Байєса.

У четвертому розділі розглянуто питання комп’ютерного імітаційного моделювання КІГ на базі лінійних випадкових послідовностей. Проведено серію експериментів по моделюванню КІГ при фізичних навантаженнях. Розглянуто питання точності імітаційного моделювання. Розроблено систему комп’ютерних програм для проведення імітаційних експериментів та обробки кардіоінтервалограм при фізичних навантаженнях на основі запропонованих у дисертаційній роботі моделі та методів.

Алгоритм комп’ютерного моделювання КІГ полягає в моделюванні нестаціонарного випадкового процесу (1), що зводиться до імітації детермінованої складової

, що обчислюється на основі поліномів Чебишева за визначеними на основі спектрального розкладу оцінки математичного сподівання в ряд за поліномами Чебишева коефіцієнтами
та моделювання стаціонарної лінійної випадкової послідовності (2).

Алгоритм моделювання реалізацій дискретної стаціонарної лінійної послідовності (2) полягає в наступному:

Будується рівняння авторегресії

,
, (12)

розв’язком якого є стаціонарна лінійна послідовність (2).

Оцінюються коефіцієнти

, рівняння авторегресії (12) шляхом розв’язання системи рівнянь Юла-Уокера за заданою кореляційною матрицею.

Оцінюється послідовність відліків ядра

за рекурентними співвідношеннями

,

, (13)

,
.

Генеруються реалізації дискретного стаціонарного білого шуму з математичним сподіванням рівним нулеві та дисперсією

.

Генеруються реалізації лінійної випадкової послідовності (2).

На основі математичної моделі (1) проведено серію імітаційних експериментів по моделюванню КІГ в період фізичного навантаження та в період відновлення серцевого ритму (рис. 6).

З метою перевірки адекватності, точності імітаційної моделі КІГ при фізичних навантаженнях, було проведено оцінювання абсолютних та відносних похибок комп’ютерного імітаційного моделювання. Для цього змодельовані реалізації КІГ в період фізичного навантаження та КІГ в період відновлення частоти серцевих скорочень. Отримані оцінки математичних сподівань та оцінки кореляційних функцій змодельованих КІГ порівнювались із отриманими протягом експериментальних досліджень оцінками математичних сподівань та оцінками кореляційних функцій.

Скориставшись правилом „

” визначено, що з довірчою ймовірністю
відносна похибка імітаційного моделювання КІГ на основі її моделі (10) для оцінки математичного сподівання буде належати інтервалу
, а відносна похибка оцінки кореляційної функції буде належати інтервалу
, що дає підстави стверджувати про досить високу ступінь точності імітаційного моделювання КІГ при фізичних навантаженнях.

На базі розробленої в даній дисертаційній роботі математичної моделі та методів обробки КІГ створено систему програм для обробки, аналізу та імітаційного моделювання КІГ, яка може використовуватися в сучасних системах комп’ютерної діагностики серця.

Ця система програм реалізує такі функції: