Для оценки наработки на отказ получается выражение, соответствующее распределению Релея:
(3.22)где
.Отсюда плотность распределения времени наработки на отказ
. (3.23)Использовав функцию максимального правдоподобия, получим оценку для общего количества ошибок
и коэффициента K. (3.24) (3.25)Особенностью третьей модели является учёт ступенчатого характера изменения надёжности при устранении очередной ошибки. В качестве основной функции рассматривается распределение времени наработки на отказ P(t). Если ошибки не устраняются, то интенсивность отказов является постоянной, что приводит к экспоненциальной модели для распределения:
Отсюда плотность распределения наработки на отказ T определяется выражением:
где t > 0, l > 0 и 1/l - среднее время наработки на отказ, т.е. Тср=1/l. Здесь Тср - среднее время наработки на отказ.
Для аппроксимации изменения интенсивности от времени при обнаружении и устранении ошибок используется функция следующего вида:
;Если 0 < b < 1, то интенсивность отказов снижается по мере отладки или в процессе эксплуатации. При таком виде функции l(t) плотность функции распределения наработки на отказ описывается двухпараметрическим распределением Вейбулла:
.Распределение Вейбулла достаточно хорошо отражает реальные зависимости при расчёте функции наработки на отказ.
3.7 Проверка математических моделей
Обоснование приведённых математических моделей приведено в ряде работ, в которых наибольшее внимание уделялось проверке первой и второй моделей. Контролировались и обрабатывались экспериментальные данные интенсивности обнаружения ошибок dn/dt на фиксированном интервале времени, количества обнаруженных ошибок n или наработки на отказ T в зависимости от времени функционирования программ на вычислительной системе. Характеристики, полученные расчётами с использованием математических моделей, сопоставлялись с полученными экспериментальными значениями и применялись для прогнозирования показателей с последующим анализом отклонений от экспериментальных данных.
Пример анализа первой модели приведён на рис. 3.3. Определялся и прогнозировался интервал времени между последовательными отказами при непрерывном
Для оценки достоверности моделей анализировалось количество ошибок n, выявленное при функционировании комплексов программ в течении времени t [см. (3.14)]. Значения
и K определялись методом максимального правдоподобия для каждого из 16 исследованных вариантов создания больших программ. Пример изменения количества выявленных ошибок в зависимости от времени функционирования одного комплекса программ представлен на рис. 3.4. Из графика следует, что первая модель [см. (3.14)] хорошо аппроксимирует количество ошибок во всём исследованном интервале времени. При значениях n > 288 отклонение реального количества обнаруженных ошибок от расчётного составляет 21%.ЛИТЕРАТУРА
1. Надёжность автоматизированных систем управления. / Под редакцией Я.А. Хетагурова.- М.: Высшая школа, 1979 - 287с.
2. Половко А.М. Основы теории надёжности. - М.: Наука, 1964 - 446с.
3. Голинкевич Т.А. Прикладная теория надёжности. - М.: Высшая школа, 1985 - 168с.
4. Маликов И.М. Надёжность судовой электронной аппаратуры и систем автоматического управления. - Л.: Судостроение, 1967 - 315с.
5. Шишонок Н.А. и др.Основы теории надёжности и эксплуатации радиоэлектронной техники. - М.: Советское радио, 1964 - 551с.
6. Шор Я.Б. Статистические методы анализа и контроля качества и надёжности. - М.: Советское радио, 1962 - 552с.
7. Росин М.Ф., Булыгин В.С. Статистическая динамика и теория эффективности систем управления. - М.: Машиностроение, 1981 - 312с.
8. Вероятностные методы в вычислительной технике. - М.: Высшая школа, 1986 - 312с.
9. Яншин А.А. Теоретические основы конструирования, технологии и надёжности ЭВА. - М.: Радио и связь, 1983 - 312с.
10. Рудзит Я.А., Плуталов В.Н. Основы метрологии, точность и надёжность в приборостроении. - М.: Машиностроение, 1991 - 303с.
11. Саяпин В.В. Конспект лекций по курсу “Основы теории надёжности”. - М.: МВ и ССО СССР, МАИ, 1971 - 142с.
12. Дружинин Г.В. Надёжность автоматизированных производственных систем. - М.: Энергоатомиздат, 1986 - 479с.
13. Липаев В.В. Надёжность программного обеспечения АСУ. - М.: Энергоиздат, 1981 - 240с.
14. Шураков В.В. Надёжность программного обеспечения систем обработки данных. - М.: Финансы и статистика, 1987 - 271с.
15. Садчиков П.И., Приходько Ю.Г. Методы оценки надёжности и обеспечения устойчивости функционирования программ. - М.: Знание, 1983 - 102с.
16. Сборник задач по теории надёжности./ Под редакцией А.М. Половко и И.М. Маликова. - М.: Советское радио, 1972 - 407с.
17. Теория надёжности радиоэлектронных схем в примерах и задачах. - М.: Энергия, 1976 - 448с.
18. Снегирёв А.А. Сборник задач по надёжности САУ. - М.: МВ и ССО СССР, МИФИ, 1978 - 87с.
19. Тейер Т., Липов М., Нельсон Э. Надёжность программного обеспечения. - М.: Мир, 1981 - 325с.
20. Майерс Г. Надёжность программного обеспечения. - М.: Мир, 1980 - 360с.
21. Гласс Р. Руководство по надёжному программированию. - М.: Финансы и статистика, 1982 - 256с.