4. Конструктор должен предусмотреть хороший доступ к блокам, элементам аппаратуры для осмотра, ремонта; предусмотреть сигнализацию об отказе того или иного элемента.
1.2.2 Факторы, влияющие на надёжность в процессе изготовления
1. Качество материалов. Необходим хороший входной контроль материалов и комплектующих изделий, поступающих от других предприятий.
2. Качество хранения материалов и комплектующих изделий.
3. Чистота рабочих мест, оборудования, рабочего помещения.
4. Соблюдение технологии изготовления и сборки: термообработка, антикоррозийные покрытия и т.п.
1.2.3 Факторы влияющие на надёжность в процессе эксплуатации
1. Квалификация обслуживающего персонала. Этот фактор доказан практикой.
2. На надёжность влияют внешние условия: климатические условия, вибрации, перегрузки, удары. Частое включение и выключение аппаратуры нежелательно.
3. На надёжность влияет фактор времени. Продолжительность эксплуатации аппаратуры с момента выпуска с завода до капитального ремонта может составлять несколько лет. К концу этого периода повышается опасность возникновения отказов отдельных элементов.
1.3 Пути повышения надёжности
1. Устранение влияния факторов, приводящих к снижению надёжности аппаратуры.
2. Резервирование (вместо одного изделия ставят два). Второе изделие резервное. Если откажет 1-е изделие, то подключают 2-е изделие.
3. Сбор во время эксплуатации аппаратуры полных и достоверных данных об отказах и простоях аппаратуры. Эта информация может использоваться при решении задачи повышения надёжности аппаратуры.
1.4 Основные понятия теории надёжности
Теория надёжности это наука, изучающая закономерности особого рода явлений - отказов технических устройств.
Надёжность - это более узкая характеристика изделия, чем качество изделия.
Качество изделия - это совокупность свойств, определяющих пригодность изделия для работы в соответствии со своим назначением. К таким свойствам относятся надёжность, точность, удобство и т.д.
Надёжность - свойство изделия выполнять заданные функции в заданных условиях эксплуатации.
Надёжность - свойство изделия сохранять значения заданных параметров в заданных пределах при определённых условиях эксплуатации.
Надёжность находится в противоречии с точностью, габаритами и весом изделия. Чем меньше габариты изделия, тем менее оно надёжно.
Вторым фундаментальным понятием теории надёжности является понятие отказа.
Отказ - это событие, после наступления которого изделие перестаёт выполнять свои функции.
Отказы делят на внезапные, постепенные, перемежающиеся.
Внезапный отказ - происходит в результате скачкообразного изменения характеристик изделия.
Постепенный отказ - отказ, возникший в результате постепенного изменения характеристик изделия вследствие износа, старения элементов изделия.
Перемежающийся отказ - самоустраняющийся отказ, возникающий в результате временно действующих причин.
Отказы в АСУ целесообразно подразделять на аппаратурные и программные.
Аппаратурным отказом принято считать событие, при котором изделие утрачивает работоспособность и для его восстановления требуется проведение ремонта аппаратуры или замена отказавшего изделия на исправное.
Программным отказом считается событие, при котором объект утрачивает работоспособность по причине несовершенства программы (несовершенство алгоритма решения задачи, отсутствие программной защиты от сбоев, отсутствие программного контроля за состоянием изделия, ошибки в представлении программы на физическом носителе и т.д.). Характерным признаком программного отказа является то, что устраняется он путём исправления программы.
Второстепенные неисправности: дефекты и неполадки.
Дефект - это неисправность, которая приводит к отказу не сразу, а через некоторое время. Пример: нарушение изоляции провода, а впоследствии короткое замыкание.
Неполадки - неисправности, не приводящие к отказу изделия (перегорание лампочки освещения шкалы).
Ремонтопригодность - приспособленность изделия к предупреждению, обнаружению и устранению отказов.
Сохранность изделия - свойство изделия сохранять свою способность к работе в определённых условиях хранения.
Долговечность (технический ресурс) - это суммарная продолжительность работы изделия, ограниченная износом, старением или другим предельным состоянием.
Ресурс - это установленное время, по истечению которого эксплуатация изделия недопустима. Пример: авиационный двигатель: ресурс 500 часов.
Безотказность - свойство изделия непрерывно сохранять работоспособность в течении некоторого времени или некоторой наработки.
Работоспособность - такое состояние изделия, при котором оно способно выполнять заданные функции, удовлетворяя требованиям нормативно - технической документации. Работоспособность - характеристика состояния изделия в некоторый момент времени.
Наработка - это продолжительность или объём работы изделия.
Наработка до отказа - продолжительность или объём работы изделия до возникновения первого отказа.
Средняя наработка до отказа - математическое ожидание наработки изделия до первого отказа.
Однако для АСУ, информационных сетей и вычислительной техники оказалось, что этих понятий для характеристики надёжности недостаточно. В практике создания и использования АСУ находят применение дополнительные понятия, без учёта которых нельзя в полной мере представить комплексное понятие “надёжность”. Рассмотрим эти понятия.
1. Живучесть - свойство объекта сохранять работоспособность (полностью или частично) в условиях неблагоприятных воздействий, не предусмотренных нормальными условиями эксплуатации. Главный смысл требования к живучести объекта состоит не только в том, чтобы он длительное время работал непрерывно без отказа в нормальных условиях эксплуатации и чтобы его можно было быстро отремонтировать, но также и в том, чтобы он в ненормальных условиях эксплуатации сохранял работоспособность, хотя бы и ограниченную.
2. Достоверность информации, выдаваемой объектом. При работе вычислительной машины или тракта передачи информации могут отсутствовать отказы. Поэтому объект может обладать высокой безотказностью, хорошей долговечностью, сохраняемостью и ремонтопригодностью. Однако в нём могут иметь место сбои, искажающие информацию. В изделии “ломается”, “портится” не аппаратура, а информация. Это не менее опасная “поломка”.
1.5 Виды надёжности
При исследовании надёжности часто ставится задача определить причины, приводящие к формированию той или другой стороны надёжности. Без этого невозможно наметить правильную программу работ по повышению надёжности. Это приводит к делению надёжности на:
Аппаратную надёжность , обусловленную состоянием аппаратуры;
Программную надёжность объекта, обусловленную состоянием программ;
Надёжность объекта, обусловленную качеством обслуживания;
Надёжность функциональная.
Особого внимания заслуживает понятие “программная надёжность”, так как её важная роль в обеспечении надёжности АСУ является одной из самых характерных особенностей прикладной теории надёжности АСУ. Понятие “программная надёжность” возникло в результате следующих основных причин. В инженерной практике всё большее значение приобретают программно-управляемые изделия: программно-управляемые станки; вычислительные машины и системы машин; системы передачи данных АСУ и др. Для этих изделий характерно то, что они являются органическим слиянием технических средств (аппаратуры) и программы. Без программного обеспечения вычислительный комплекс, или тракт передачи данных, - это “мёртвый” набор технических устройств, который оживает тогда и только тогда, когда он используется как единое целое с программой. Поэтому говорить о надёжности таких устройств бессмысленно, если не учитывать влияния программного обеспечения.
Учёт влияния программного обеспечения приводит к необходимости выделять в особый вид программную надёжность объектов.
Надёжность функциональная - надёжность выполнения отдельных функций, возлагаемых на систему. АСУ, как правило, система многофункциональная, т.е. она предназначается для выполнения ряда функций, различных по своей значимости. Требования к надёжности выполнения различных функций могут быть различными (например, для функции “расчёт зарплаты” требуется высокая точность, но не требуется жёсткого ограничения времени). Поэтому может оказаться целесообразным задавать различные требования к выполнению различных функций. Примером функциональной надёжности в АСУ может быть надёжность передачи определённой информации в системе передачи данных.
1.6 Основные понятия и теоремы теории вероятностей
Надёжность изделия зависит от многочисленного комплекса факторов, определяемых как внутренними свойствами изделия, так и воздействием внешних условий.
Это приводит к тому, что процесс возникновения отказов, а также другие характеристики надёжности носят случайный характер.
Для исследования случайных явлений используются вероятностные методы.
Рассмотрим понятие событие.
Событие - это всякий факт, который в результате опыта может произойти или не произойти.
Примеры событий:
А - появление герба при бросании монеты.
В - попадание в цель при выстреле.
С - отказ изделия.
Д - безотказная работа изделия.
Событие достоверное - если оно обязательно появляется в результате данного опыта.
Невозможное событие - если оно не может появиться в результате данного опыта.
Случайное событие - событие, которое может появиться, а может и не появиться в результате данного опыта.