Имеем:
Приравниваем
или
Следовательно
Для оценки степени расхождения статистического закона распределения с теоретическим законом распределения выбираем меру расхождения, по величине которой можно судить о том, вызвано ли расхождение случайными причинами, или разница между распределениями настолько велика, что выбранный теоретический закон распределения непригоден.
Обозначим меру расхождения через
Например:
где
Чем меньше
Выдвигаем гипотезу H о том, что выбранный нами закон распределения случайной величины Т не противоречит статистическому закону распределения. На основании имеющегося статистического материала следует проверить эту гипотезу H. Широко используются два критерия проверки гипотезы H: критерий Пирсона и критерий Колмогорова.
1.14 Критерий Пирсона
Разбиваем полученные в опытах значения Т на k интервалов:
k - число интервалов. Выдвигаем гипотезу H о том, что выбранная теоретическая плотность вероятности случайной величины Т есть функция f(t).
В качестве величины
где n - число опытов (число отказов);
Можно доказать, что если верна гипотеза Н, то при
Т.о. при
Пусть
Если
маловероятное событие для гипотезы Н.
Т.о, в этом случае гипотеза Н отклоняется, т.е выбранная теоретическая плотность вероятности не согласуется с результатами опытов.
Область
1.15 Критерий Колмогорова
Критерий Пирсона можно применять как для непрерывных, так и для дискретных случайных величин. Критерий Колмогорова применяется только для непрерывных случайных величин.
При использовании критерия Колмогорова сравниваются статистическая функция распределения
Если параметры теоретической функции распределения q(t) неизвестны, то вместо параметров могут использоваться оценки этих параметров, полученные по результатам опытов, т.е. по статистической выборке. В этом случае принимают
Определяем
Определяем величину
Выдвигаем гипотезу Н о том, что выбранная нами теоретическая функция распределения
Колмогоров доказал следующую теорему.
Если верна гипотеза Н, то при
тогда
Методика проверки гипотезы Н по критерию Колмогорова:
1) определяем статистическую функцию распределения