Смекни!
smekni.com

Назначение и функции процессора, структура и функционирование микропроцессора (стр. 2 из 4)

Параллельно развиваются микропроцессоры, взявшие за основу стековую вычислительную модель.

Рассмотрим технологию изготовления процессоров.

В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см) вставляющегося в ZIF-сокет. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов. В первых компьютерах процессоры были громоздкими агрегатами, занимавшими подчас целые шкафы и даже комнаты, и были выполнены на большом количестве отдельных компонентов.

В начале 1970-х годов благодаря прорыву в технологии создания БИС и СБИС (больших и сверхбольших интегральных схем, соответственно), микросхем, стало возможным разместить все необходимые компоненты ЦП в одном полупроводниковом устройстве. Появились так называемые микропроцессоры. Сейчас слова микропроцессор и процессор практически стали синонимами, но тогда это было не так, потому что обычные (большие) и микропроцессорные ЭВМ мирно сосуществовали еще, по крайней мере, 10-15 лет, и только в начале 1980-х годов микропроцессоры вытеснили своих старших собратьев. Надо сказать, что переход к микропроцессорам позволил потом создать персональные компьютеры, которые теперь проникли почти в каждый дом [1, c. 88].

Первый микропроцессор Intel 4004 был представлен 15 ноября 1971 года корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 740 кГц и стоил 300 долл.

За годы существования технологии микропроцессоров было разработано множество различных их архитектур. Многие из них (в дополненном и усовершенствованном виде) используются и поныне. Например, Intel x86, развившаяся вначале в 32-битную IA-32, а позже в 64-битную x86-64 (которая у Intel называется EM64T). Процессоры архитектуры x86 вначале использовались только в персональных компьютерах компании IBM (IBM PC), но в настоящее время всё более активно используются во всех областях компьютерной индустрии, от суперкомпьютеров до встраиваемых решений. Также можно перечислить такие архитектуры как Alpha, POWER, SPARC, PA-RISC, MIPS (RISC - архитектуры) и IA-64 (EPIC-архитектура).

Большинство процессоров используемых в настоящее время являются Intel-совместимыми, то есть имеют набор инструкций и пр., как процессоры компании Intel.

Наиболее популярные процессоры сегодня производят фирмы Intel, AMD и IBM. Среди процессоров от Intel: 8086, i286 (в компьютерном сленге называется «двойка», «двушка»), i386 («тройка», «трёшка»), i486 («четвёрка»), Pentium («пень», «пенёк», «второй пень», «третий пень» и т. д. Наблюдается также возврат названий: Pentium III называют «тройкой», Pentium 4 - «четвёркой»), Pentium II, Pentium III, Celeron (упрощённый вариант Pentium), Pentium 4, Core 2 Quad, Core i7, Xeon (серия процессоров для серверов), Itanium, Atom (серия процессоров для встраиваемой техники) и др. AMD имеет в своей линейке процессоры архитектуры x86 (аналоги 80386 и 80486, семейство K6 и семейство K7 - Athlon, Duron, Sempron) и x86-64 (Athlon 64, Athlon 64 X2, Phenom, Opteron и др.).

2. ТИПЫ ПРОЦЕССОРОВ

CISC-процессоры

Complex Instruction Set Computer - вычисления со сложным набором команд. Процессорная архитектура, основанная на усложнённом наборе команд. Типичными представителями CISC является семейство микропроцессоров Intel x86 (хотя уже много лет эти процессоры являются CISC только по внешней системе команд).

RISC-процессоры

Reduced Instruction Set Computer - вычисления с сокращённым набором команд. Архитектура процессоров, построенная на основе сокращённого набора команд. Характеризуется наличием команд фиксированной длины, большого количества регистров, операций типа регистр-регистр, а также отсутствием косвенной адресации. Концепция RISC разработана Джоном Коком (John Cocke) из IBM Research, название придумано Дэвидом Паттерсоном (David Patterson).

Среди первых реализаций этой архитектуры были процессоры MIPS, PowerPC, SPARC, Alpha, PA-RISC. В мобильных устройствах широко используются ARM-процессоры.

MISC-процессоры

Minimum Instruction Set Computer - вычисления с минимальным набором команд. Дальнейшее развитие идей команды Чака Мура, который полагает, что принцип простоты, изначальный для RISC-процессоров, слишком быстро отошёл на задний план. В пылу борьбы за максимальное быстродействие, RISC догнал и перегнал многие CISC процессоры по сложности. Архитектура MISC строится на стековой вычислительной модели с ограниченным числом команд (примерно 20-30 команд).

Многоядерные процессоры

Содержат несколько процессорных ядер в одном корпусе (на одном или нескольких кристаллах).

Процессоры, предназначенные для работы одной копии операционной системы на нескольких ядрах, представляют собой высокоинтегрированную реализацию мультипроцессорности.

Двухъядерность процессоров включает такие понятия, как наличие логических и физических ядер: например двухъядерный процессор Intel Core Duo состоит из одного физического ядра, которое в свою очередь разделено на два логических. Процессор Intel Core 2 Quad состоит из двух физических ядер, каждое из которых в свою очередь разделено на два логических ядра, что существенно влияет на скорость его работы.

10 сентября 2007 года были выпущены в продажу нативные (в виде одного кристалла) четырёхъядерные процессоры для серверов AMD Opteron, имевшие в процессе разработки кодовое название AMD Opteron Barcelona. 19 ноября 2007 года вышел в продажу четырёхъядерный процессор для домашних компьютеров AMD Phenom. Эти процессоры реализуют новую микроархитектуру K8L (K10).

27 сентября 2006 года Intel продемонстрировала прототип 80-ядерного процессора. Предполагается, что массовое производство подобных процессоров станет возможно не раньше перехода на 32-нанометровый техпроцесс, а это в свою очередь ожидается к 2010 году.

26 октября 2009 года Tilera анонсировалаhttp://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81%D0%BE%D1%80 - cite_note-3#cite_note-3 100-ядерный процессор широкого назначения серии TILE-Gx. Каждое процессорное ядро представляет собой отдельный процессор с кэшем 1, 2 и 3 уровней. Ядра, память и системная шина связаны посредством технологии Mesh Network. Процессоры производятся по 40-нм нормам техпроцесса и работают на тактовой частоте 1,5 ГГц. Выпуск 100-ядерных процессоров назначен на начало 2011 года.

На данный момент массово доступны двух-, четырёх- и шестиядерные процессоры, в частности Intel Core 2 Duo на 65-нм ядре Conroe (позднее на 45-нм ядре Wolfdale) и Athlon 64 X2 на базе микроархитектуры K8. В ноябре 2006 года вышел первый четырёхъядерный процессор Intel Core 2 Quad на ядре Kentsfield, представляющий собой сборку из двух кристаллов Conroe в одном корпусе. Потомком этого процессора стал Intel Core 2 Quad на ядре Yorkfield (45 нм), архитектурно схожем с Kentsfield но имеющем больший объём кэша и рабочие частоты.

Компания AMD пошла по собственному пути, изготовляя четырёхъядерные процессоры единым кристаллом (в отличие от Intel, первые четырехъядерные процессоры которой представляют собой фактически склейку двух двухъядерных кристаллов). Несмотря на всю прогрессивность подобного подхода первый «четырёхъядерник» фирмы, получивший название AMD Phenom X4, получился не слишком удачным. Его отставание от современных ему процессоров конкурента составляло от 5 до 30 и более процентов в зависимости от модели и конкретных задач.

К 1-2 кварталу 2009 года обе компании обновили свои линейки четырёхъядерных процессоров. Intel представила семейство Core i7, состоящее из трёх моделей, работающих на разных частотах. Основными изюминками данного процессора является использование трёхканального контроллера памяти (типа DDR-3) и технологии эмулирования восьми ядер (полезно для некоторых специфических задач). Кроме того, благодаря общей оптимизации архитектуры удалось значительно повысить производительность процессора во многих типах задач. Слабой стороной платформы, использующей Core i7, является её чрезмерная стоимость, так как для установки данного процессора необходима дорогая материнская плата на чипсете Intel X58 и трёхканальный набор памяти типа DDR3, также имеющий на данный момент высокую стоимость.

Компания AMD в свою очередь представила линейку процессоров Phenom II X4. При её разработке компания учла свои ошибки: был увеличен объём кэша (явно недостаточный у первого «Фенома»), а производство процессора было переведено на 45 нм техпроцесс, позволивший снизить тепловыделение и значительно повысить рабочие частоты. В целом, AMD Phenom II X4 по производительности стоит вровень с процессорами Intel предыдущего поколения (ядро Yorkfield) и весьма значительно отстаёт от Intel Core i7. Однако, принимая во внимание умеренную стоимость платформы на базе этого процессора, его рыночные перспективы выглядят куда более радужно, чем у предшественника.

3. СОПРОЦЕССОРЫ

Сопроцессор - специализированный процессор, расширяющий возможности центрального процессора компьютерной системы, но оформленный как отдельный функциональный модуль. Физически сопроцессор может быть отдельной микросхемой или может быть встроен в центральный процессор (как это делается в случае математического сопроцессора в процессорах для ПК начиная с Intel 486DX).

Математический сопроцессор 80x287 в колодке на базовой плате персонального компьютера.

Различают следующие виды сопроцессоров:

· математические сопроцессоры общего назначения, обычно ускоряющие вычисления с плавающей точкой,

· сопроцессоры ввода-вывода (например - Intel 8089), разгружающие центральный процессор от контроля за операциями ввода-вывода или расширяющие стандартное адресное пространство процессора,

· сопроцессоры для выполнения каких-либо узкоспециализированных вычислений.

Сопроцессоры могут входить в набор логики, разработанный одной конкретной фирмой (например, Intel выпускала в комплекте с процессором 8086 сопроцессоры 8087 и 8089) или выпускаться сторонним производителем (например, Weitek 1064 для M68k и 1067 для Intel 80286).