Смекни!
smekni.com

Накопители информации (стр. 2 из 4)

Следующая важная характеристика - время доступа необходимое HDD для поиска информации на диске. Сегодня среднее время доступа для лучших IDE и SCSI дисков - это значение меньше 10 мс.

Среднее время поиска – время в течение которого магнитные головки перемещаются от одного цилиндра к другому. Эта характеристика зависит, в основном, от механизма привода головок, а не от интерфейса диска.

Скорость передачи данных, зависит от числа байт в секторе, количестве секторов на дорожке и от скорости вращения дисков (3000-3600 об./мин). У самых современных HDD скорость достигает 7200 об/мин.

Гарантированное производителями время безотказной работы обычно составляет 20000-500000 часов. Однако наработка винчестера за год составит 8760 часов, что делает этот параметр не столь важным, так как винчестер устареет раньше, чем испортится.

На скорость работы винчестера существенно влияет кэш-память – ячейки памяти, размещенные на контроллере винчестера. Она работает по принципу кэш памяти 2-го уровня. Типичная величина может варьироваться от 64 Кб до 1024 Кб.

Съемные/внешние/переносные жесткие диски по своим характеристикам не отличаются от обычных. Альтернативой являются накопители со сменными дисками, в отличии от съемных винчестеров подвижным является лишь непосредственно носитель информации, функционально напоминают накопители на жестких дисках, но существенно превосходят их по характеристикам. Объем записываемой информации варьируется от 100 Мб, до 1 Гб, среднее время доступа 10-30 мс, средняя скорость обмена 4-6 Мб/сек. Производственных стандартов на данный вид ВЗУ не существует, однако наиболее распространены накопители серии Zip и Jaz фирмы iOmega[2].

1.5. ПРИВОДЫ CD-ROM

Ранее использовавшиеся для аудиоаппаратуры компакт-диски были модифицированы для применения в РС и теперь стали неотъемлемой частью современных компьютеров. СD являются отличным носителем информации. Они более компактны, удобны и дешевы чем винчестер, однако, не могут использоваться как HDD, так как стоимость записи и ее скорость намного выше. Привод выполняется как внутренне устройство, и имеет размер дисковода 5,25”. Могут управляться через IDE-, SCSI-интерфейс или звуковую карту. Диск изготавливается из поликарбоната, с одной стороны его покрывают отражающим слоем (из алюминия или золота). Запись осуществляется путем выжигания чередований углублений в металлическом слое лазерным лучом.

Основная характеристика - скорость передачи данных. Единицей считывания является скорость считывания с магнитной ленты. У созданных позже устройств скорость считывания кратна ей и варьируется от 150 Кб/сек до 6-7 Мб/сек. Качество считывания характеризует коэффициент ошибок. Качество является оценкой вероятности искажения информационного бита при его считывании. Этот параметр отражает способность устройства корректировать ошибки чтения/записи.

Среднее время доступа – время, требующееся приводу для поиска необходимых данных на носителе, варьируется от 400 до 80 мс. Буферная память позволяет передавать данные с постоянной скоростью. Существует три типа буферов: динамический, статический и с опережающим чтением. Средняя наработка на отказ составляет 50-125 тысяч часов, что намного опережает сроки морального устаревания устройства.

Существуют также накопители CD-RW, позволяющие производить запись на компакт-диск. При этом диск покрыт слоем термочувствительной краски, с такими же отражающими свойствами, как и у алюминиевого покрытия. Этот привод считается последним достижением в области разработок записываемых компакт дисков.

DVD (Digital Video Disk) – диски, которые сменят CD-ROM, первоначально разрабатывались для домашнего видео. Отличаются тем, что могут хранить объем данных многократно превышающий возможности компакт дисков (от 4,7 до 17 Гб.). При этом уровень качества звука и изображения хранимого на DVD приближается к студийному качеству.

В DVD лазерный луч уже, что позволяет снизить толщину защитного слоя диска в 2 раза. Это привело к появлению двухслойных дисков.

Магнитооптические накопители (Magneto-Optical) являются накопителем информации, в основе которого лежит магнитный носитель с оптическим управлением. Сплав, которым покрыта поверхность такого магнитооптического диска, меняет свои свойства как под воздействием тепла, так и под воздействием магнитного поля. Если происходит нагревание диска сверх некоторой температуры, то становится возможным изменение магнитной поляризации с помощью небольшого магнитного поля. На этом свойстве основываются технологии чтения записи магнитооптических дисков. Такие диски могут быть односторонними 3,5” емкости 128, 230, и 640 Мб. Двухсторонними 5,25” емкостью 600 Мб. – 2,6 Гб. 2,5” диски Mini Disk Data фирмы Sony, созданы специально для аудиоустройств и имеют емкость 140 Мб. 12” диски для однократной записи емкостью 3,5 – 7 Гб получили большое распространение при построении оптических библиотек[3].

1.6. ФЛЭШ-ПАМЯТЬ

Она используется в самых разнообразных цифровых устройствах. Так приятно, когда под рукой есть мобильный телефон, нужная информация находится в карманном компьютере, сделанные фотографии можно увидеть сразу, а не по возвращении из отпуска. Небольшой брелок умеет хранить массу полезных данных: флэш-память также служит памятью в МР3-плеерах и игровых приставках.

Само название Flash впервые применила компания Toshiba в 1984 г. для описания своих новых микросхем, в которых доступ к данным осуществляется «inaflash», т.е. быстро, мгновенно.

Флэш представляет собой твердотельное полупроводникивое устройство, которое не требует дополнительной энергии для хранения данных, т.е. при выключении питания информация сохраняется. Данные с флэш-носителя можно сколько угодно раз считать и ограниченное число раз перезаписать. Последнее связано с тем, что перезапись идет через стирание, которое приводит к износу микросхемы. Современная флэш-память позволяет заменять содержимое ячеек от 10 тыс. до 1 млн. раз.

В отличие от жестких дисков, CD - и DVD-ROM, во флэш-накопителях нет движущихся частей. Это существенно снизило потребление энергии при записи, а также в 5-10 раз по сравнению с жесткими дисками увеличило механическую нагрузку, которую способно выдерживать устройство памяти. Твердотельные носители можно трясти и ронять без ущерба для их работоспособности по оценкам производителей, информация на флэш-микросхемах хранится от 20 до 100 лет.

Благодаря компактным размерам, высокой степени надежности и низкому энергопотреблению твердотельные накопители активно используют в современных портативных устройствах, причем как в качестве съемного носителя, так и для хранения кода ПО[4].

1.7. ДРУГИЕ УСТРОЙСТВА НАКОПЛЕНИЯ И ХРАНЕНИЯ ИНФОРМАЦИИ

Кроме вышеперечисленных основных устройств накопления и хранения информации существуют некоторые другие, по разным причинам менее популярные. К таким устройствам относятся:

– бернулли-диски;

– устройства резервирования данных;

– некоторые другие устройства.

Все эти устройства имеют разные емкости, скорости доступа к информации, свои минусы и плюсы, а также разную цену. У них есть свои ограничения, но есть и несомненные достоинства. Одно у них всех есть общее – эти устройства были созданы для хранения, накопления и резервирования данных.

2. ТЕНДЕНЦИИ РАЗВИТИЯ НАКОПИТЕЛЕЙ ИНФОРМАЦИИ

Следует отметить, что разработки в области автономных устройств для переноса информации начались довольно давно.

Первая энергонезависимая полупроводниковая память называлась ROM, т.е. название подсказывает, что произвести запись здесь можно было только один раз. Поэтому ROM использовалась лишь для хранения информации. Частично эту проблему удалось решить при создании PROM. Микросхему можно было подвергнуть повторному (но пока только единственному) «прожигу» с помощью специального устройства и тем самым полностью перезаписать информацию на ней.

Следующим шагом стало создание компанией Intel микросхемы EPROM на базе МОП-транзистора (металл – оксид – полупроводник). Появилась долгожданная возможность неоднократной перезаписи информации, хранящейся на всей микросхеме, после стирания содержимого рентгеновскими лучами. Впоследствии также выпущены схемы, где обнуление осуществлялось с помощью ультрафиолетовых лучей через специальное окошко на микросхеме.

В 1979 г. компания Intel разработала новый вид памяти – EEPROM, в котором появилась возможность перезаписывать не всю информацию на микросхеме, а ее часть. Данные в определенных ячейках изменялись под влиянием электрического тока.

И вот наконец пришел черед флэш-памяти. Разработанная компанией Toshiba микросхема получила название NAND от применяемой логической схемы NOTAND («НЕ-И»). Позже, в 1988 г., компания Intel выпустила свой вариант флэш-памяти NOR (NOTOR, «НЕ-ИЛИ»). Хотя с тех пор прошло уже без малого 20 лет, эти два типа микросхем и сейчас составляют львиную долю оборота рынка флэш-памяти.

Корпорация Hitachi разработала архитектуру флэш-памяти, названную AND, которая комбинирует свойства NOR и NAND. Эти микросхемы обладают повышенной износостойкостью за счет применения алгоритмов равномерного использования всех ячеек при работе. Операции записи и стирания информации производятся методом туннелирования.

Компания Mitsubishi создала собственную флэш-память, носящую название DiNOR, в которой запись и стирание информации происходит также методом туннелирования. Эта память более долговечная, поскольку использует особый метод стирания данных, предохраняющий ячейки от пережигания[5].

Рынок внешних накопителей информации в последнее время развивался в основном за счет портативных устройств на флэш-памяти. Однако их объем до сих пор не позволяет применять их там, где необходимо сохранять и транспортировать большие массивы информации. В таких случаях на помощь приходят накопители, построенные на базе жестких портативных дисков. Популярность последних постоянно растет, их используют не только в ноутбуках и КПК, но даже в смартфонах и мобильных телефонах. Большинство крупных компаний давно уже наладили выпуск жестких портативных дисков размером от 0,85 до 2,5 дюйма, которые могут служить и как внешние накопители информации. Компания WesternDigital выпустила на рынок два таких устройства, каждое из которых обладает своими интересными особенностями.