Смекни!
smekni.com

Нанотехнологии и нанороботы (стр. 2 из 4)

2001 г. Реальное финансирование NNI превысило запланированное (422 млн. долл.) на 42 млн.

2002 г. Сиз Деккер соединил углеродную трубку с ДНК, получив единый наномеханизм. Финансирование NNI составило 697 млн. долл. (на 97 млн. больше плана).

2003 г. Профессор Фенг Лью из университета Юты, используя наработки Франца Гиссибла, с помощью атомного микроскопа построил образы орбит электронов путем анализа их возмущения при движении вокруг ядра.

На NNI отпущено 770 млн. долл. В бюджете NNI 2004 г. заложена сумма 849 млн. долл.

2.Нанотехнологии

Нанотехнологии – это технологии работы с веществом на уровне отдельных атомов. Традиционные методы производства работают с порциями вещества, состоящими из миллиардов и более атомов. Это значит, что даже самые точные приборы, произведённые человеком до сих пор, на атомарном уровне выглядят как беспорядочная мешанина. Переход от манипуляции с веществом к манипуляции отдельными атомами – это качественный скачок, обеспечивающий беспрецедентную точность и эффективность.

Нанотехнологии обычно делят на три направления:

– изготовление электронных схем, элементы которых состоят из нескольких атомов

– создание наномашин, то есть механизмов и роботов размером с молекулу

– непосредственная манипуляция атомами и молекулами и сборка из них чего угодно.

Часто употребляемое определение нанотехнологии как комплекса методов работы с объектами размером менее 100 нанометров недостаточно точно описывает как объект, так и отличие нанотехнологии от традиционных технологий и научных дисциплин. Объекты нанотехнологий, с одной стороны, могут иметь характеристические размеры указанного диапазона:

– наночастицы, нанопорошки (объекты, у которых три характеристических размера находятся в диапазоне до 100 нм).

– нанотрубки, нановолокна (объекты, у которых два характеристических размера находятся в диапазоне до 100 нм).

– наноплёнки (объекты, у которых один характеристический размер находится в диапазоне до 100 нм).

С другой стороны, объектом нанотехнологий могут быть макроскопические объекты, атомарная структура которых контролируемо создаётся с разрешением на уровне отдельных атомов.

Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические, технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул или агрегатов молекул, квантовые эффекты.

В практическом аспекте это технологии производства устройств и их компонентов, необходимых для создания, обработки и манипуляции атомами, молекулами и частицами, размеры которых находятся в пределах от 1 до 100 нанометров. Однако, нанотехнология сейчас находится в начальной стадии развития, поскольку основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных результатов позволяет относить её к высоким технологиям.

При работе с такими малыми размерами проявляются квантовые эффекты и эффекты межмолекулярных взаимодействий, такие как Ван-дер-Ваальсовы взаимодействия. Нанотехнология и, в особенности, молекулярная технология – новые области, очень мало исследованные. Развитие современной электроники идёт по пути уменьшения размеров устройств. С другой стороны, классические методы производства подходят к своему естественному экономическому и технологическому барьеру, когда размер устройства уменьшается не намного, зато экономические затраты возрастают экспоненциально. Нанотехнология – следующий логический шаг развития электроники и других наукоёмких производств.

3.Нанороботы

Нанороботы (в англоязычной литературе также используются термины «наноботы», «наноиды», «наниты») – роботы, созданные из наноматериалов и размером сопоставимые с молекулой. Они должны обладать функциями движения, обработки и передачи информации, исполнения программ. Размеры нанороботов не превышают нескольких нанометров. Согласно современным теориям, нанороботы должны уметь осуществлять двустороннюю коммуникацию: реагировать на акустические сигналы и быть в состоянии подзаряжаться или перепрограммироваться извне посредством звуковых или электрических колебаний. Также важной представляются функции репликации – самосборки новых нанитов и программированного самоуничтожения, когда среда работы, например, человеческое тело, более не нуждается в присутствии в нем нанороботов. В последнем случае роботы должны распадаться на безвредные и быстровыводимые компоненты.

Немало нанотехнологических устройств уже создано и хотя они пока являются экспериментальными разработками, практические перспективы очевидны. Разработан наноэлектродвигатель, имеющий обмотку из одной длиной молекулы, способной без потерь передавать ток. При подаче напряжения начинал вращаться ротор, состоящий из нескольких молекул. Существует также устройство линейной транспортировки, способное перемещать молекулы на заданное расстояние. Разрабатываются также молекулярные биосенсоры, антенны, манипуляторы.

Сфера применения нанороботов очень широка. По сути, они могут быть необходимы при создании, отладке и поддержании функционирования любой сложной системы. Наномашины могут применяться в электронике для создания миниустройств или электрических цепей – данная технология называется молекулярной наносборкой. В перспективе любая сборка на заводе из компонентов может быть заменена простой сборкой из атомов.

Однако на первое место сейчас вышел вопрос применения нанороботов в медицине. Тело человека как бы наталкивает на мысль о нанороботах, поскольку само содержит множество естественных наномеханизмов: множество нейтрофилов, лимфоцитов и белых клеток крови постоянно функционируют в организме, восстанавливая поврежденные ткани, уничтожая вторгшиеся микроорганизмы и удаляя посторонние частицы из различных органов. Путем обычной инъекции нанороботы могут быть впрыснуты в кровь или лимфу. Для наружного применения раствор с этими роботами может быть нанесен на участок ткани. Одним из разработанных направлений является транспортировка лекарства к пораженным клетками. При обычном введении лекарства лишь одна молекула из ста тысяч достигает цели, в то время как наноустройство в белковой оболочке увеличивает эффективность на два порядка, в перспективе не будет опознаваться фагоцитами как «чужой» и после выполнения функции распадается на безвредные компоненты. Такие нанороботы могут быть эффективными, например, при медикаментозном лечении раковых опухолей.

Нанороботы могу делать буквально все: диагностировать состояния любых органов и процессов, вмешиваться в эти процессы, доставлять лекарства, соединять и разрушать ткани, синтезировать новые. Фактически, нанороботы могут постоянно омолаживать человека, реплицируя все его ткани. На данном этапе учеными разработана сложная программа, моделирующая проектирование и поведение нанороботов в организме. Чрезвычайно детально разработаны аспекты маневрирования в артериальной среде, поиска белков с помощью датчиков. Ученые провели виртуальные исследования нанороботов для лечения диабета, исследования брюшной полости, аневризмы мозга, рака, биозащиты от отравляющих веществ.

Логично задать вопрос – когда же нанороботы придут в наш мир, станут такой же обыденностью, как персональные компьютеры и интернет. По прогнозам ученых, век нанороботов уже не за горами.

Существующие прототипы двигателя, процессора, захвата будут собраны в единое устройство, и эпоха нанороботов наступит до 2015 года. Все названные перспективы могут осуществиться, наномашины будут в состоянии воссоздавать любые предметы из атомов, смогут омолаживать человека, станут искусственными производителями пищи, заполнят околоземное пространство и сделают пригодными для человека планеты и их луны.

Существуют, однако, и опасения по поводу наномеханики. Так, упомянутая выше книга «Машины Созидания» повествует о сбое в программе роботов, в силу чего они превращают всю землю в месиво из самих себя. Читатель также может вспомнить «Непобедимый» Станислава Лемма, в котором крошечные роботы, наследие цивилизации Лиры, будучи примитивными механизмами, объединяются миллионами, образуя мыслящие конструкции, готовые уничтожить человека с бездушием механизма чтобы затем снова погрузиться в тысячелетний стазис.

Данные взгляды не являются прерогативой фантастов, их поддерживает ряд ученых, которых в прессе иногда называют наноапокалиптиками. Профессор Евгений Абрамян в своей статье «Угрозы новых технологий» рисует ситуацию, при которой роботы, предназначенные для разборки на атомы отходов, начнут разбирать в силу сбоя и все остальное. При этом такие машины будут самореплицироваться. Кроме того, как отмечает ученый, эти микромашины могут стать основой для новых, еще более чудовищных, чем современные, средств ведения войны.

Так или иначе, шаг к созданию нанороботов уже сделан и мы в очередной раз сталкиваемся с вопросом постановки формулировки: меняют ли наши нововведения нашу же жизнь, или мы сами её меняем. Сможем ли мы создать на основе наномеханики мир, свободный от голода, нужды и при этом имеющий потенциал к развитию, или дорога из желтого нанокирпича приведет нас к хаосу новых войн будет зависеть от нас самих, но ясно одно: мир меняется и мы стремительно меняемся вместе с ним.

4. Перспективы развития нанороботов

В ходе истории люди всегда только тем и занимались, что пытались упорядочивать атомы с целью получения структур с заданными свойствами. Все развитие техники, по сути, сводится к постоянному уменьшению частиц вещества, с которыми можно работать. Первобытные люди обтесывали камни, откалывая кусочки, содержащие бесконечное число атомов. Позже появились более тонкие инструменты, позволявшие оперировать значительно меньшим количеством атомов, но счет все равно шел на квадриллионы. В двадцатом веке освоили технологии создания тонких пленок. Напыляемые слои состояли из нескольких молекул.