Введение
1. Постановка задачи
2. Математические и алгоритмические основы решения задачи
2.1 Описание метода
2.2 Геометрическая интерпретация
3. Функциональные модели и блок-схемы решения задачи
4. Программная реализация решения задачи
5. Пример выполнения программы
Заключение
Список использованных источников и литературы
ВВЕДЕНИЕ
Методы решения линейных и квадратных уравнений были известны еще древним грекам. Решение уравнений третьей и четвертой степеней были получены усилиями итальянских математиков Ш. Ферро, Н. Тартальи, Дж. Картано, Л. Феррари в эпоху Возрождения. Затем наступила пора поиска формул для нахождения корней уравнений пятой и более высоких степеней. Настойчивые, но безрезультатные попытки продолжались около 300 лет и завершились благодаря работам норвежского математика Н. Абеля. Он доказал, что общее уравне6ие пятой и более высоких степеней неразрешимы в радикалах. Решение общего уравнения n-ой степени
a0xn+a1xn-1+…+an-1x+an=0, a0¹0
при n³5 нельзя выразить через коэффициенты с помощью действий сложения, вычитания, умножения, деления, возведения в степень и извлечения корня.
Для неалгебраических уравнений типа
х–cos(x)=0
задача еще более усложняется. В этом случае найти для корней явные выражения, за редким случаем не удается.
В условиях, когда формулы "не работают", когда рассчитывать на них можно только в самых простейших случаях, особое значение приобретают универсальные вычислительные алгоритмы. Известен целый ряд алгоритмов, позволяющих решить рассматриваемую задачу.
Если записать уравнение в виде
f(x) =0,
то для применения этих алгоритмов нет необходимости накладывать какие-либо ограничения на функцию f(x), а предполагается только что она обладает некоторыми свойствами типа непрерывности, дифференцируемости и т.д.
Это итерационный численный метод нахождения корня (нуля) заданной функции.
Целью данной курсовой работы является Лисп – реализация нахождения корней уравнения методом простой итерации.
1. Постановка задачи
Дано уравнение:
.Требуется решить это уравнение, точнее, найти один из его корней (предполагается, что корень существует). Предполагается, что F(X) непрерывна на отрезке [A;B].
Входным параметром алгоритма, кроме функции F(X), является также начальное приближение - некоторое X0, от которого алгоритм начинает идти.
Пример.
Найдем корень уравнения
.Рисунок 1. Функция
Будем искать простой корень уравнения, находящийся на отрезке локализации [-0.4,0].
Приведем уравнение к виду x=f(x), где
Проверим условие сходимости:
.Рисунок 2. График производной
Максимальное по модулю значение производной итерационной функции достигается в левом конце отрезка
. .Выполним 3 итерации по расчетной формуле
x=
(x),1 итерация
.2 итерация
.3 итерация
.2. Математические и алгоритмические основы решения задачи
2.1 Описание метода простых итераций
Рассмотрим уравнение
f(x)=0 (2.1)
с отделенным корнем X[a, b]. Для решения уравнения (2.1) методом простой итерации приведем его к равносильному виду:
x=φ(x). (2.2)
Это всегда можно сделать, причем многими способами. Например:
x=g(x) · f(x) + x ≡ φ(x),
где g(x) - произвольная непрерывная функция, не имеющая корней на отрезке [a,b].
Пусть x(0) - полученное каким-либо способом приближение к корню x (в простейшем случае x(0)=(a+b)/2). Метод простой итерации заключается в последовательном вычислении членов итерационной последовательности:
x(k+1)=φ(x(k)), k=0, 1, 2, ... (2.3)
начиная с приближения x(0).
УТВЕРЖДЕНИЕ: 1 Если последовательность {x(k)} метода простой итерации сходится и функция φ непрерывна, то предел последовательности является корнем уравнения x=φ(x)
ДОКАЗАТЕЛЬСТВО: Пусть
Перейдем к пределу в равенстве x(k+1)=φ(x(k)) Получим с одной стороны по (2.4), что
а с другой стороны в силу непрерывности функции φ и (2.4) .В результате получаем x*=φ(x*). Следовательно, x* - корень уравнения (2.2), т.е. X=x*.
Чтобы пользоваться этим утверждением нужна сходимость последовательности {x(k)}. Достаточное условие сходимости дает:
ТЕОРЕМА 2.1: (о сходимости) Пусть уравнение x=φ(x) имеет единственный корень на отрезке [a,b] и выполнены условия:
1) φ(x)
C1[a,b];2) φ(x)
[a,b] " x [a,b];3) существует константа q > 0: | φ '(x) | ≤ q < 1 x
[a,b]. Tогда итерационная последовательность {x(k)}, заданная формулой x(k+1) = φ(x(k)), k=0, 1, ... сходится при любом начальном приближении x(0) [a,b].ДОКАЗАТЕЛЬСТВО: Рассмотрим два соседних члена последовательности {x(k)}: x(k) = φ(x(k-1)) и x(k+1) = φ(x(k)) Tак как по условию 2) x(k) и x(k+1) лежат внутри отрезка [a,b], то используя теорему Лагранжа о средних значениях получаем:
x (k+1) - x (k) = φ(x (k)) - φ(x (k-1)) = φ '(c k )(x (k) - x (k-1)),
где c k (x (k-1), x (k)).
Отсюда получаем:
| x (k+1) - x (k) | = | φ '(c k ) | · | x (k) - x (k-1) | ≤ q | x (k) - x (k-1)| ≤
≤ q ( q | x (k-1) - x (k-2) | ) = q 2 | x (k-1) - x (k-2) | ≤ ... ≤ q k | x (1) - x (0) |. (2.5)
Рассмотрим ряд
S∞ = x (0) + ( x (1) - x (0) ) + ... + ( x (k+1) - x (k) ) + ... . (2.6)
Если мы докажем, что этот ряд сходится, то значит сходится и последовательность его частичных сумм
Sk = x (0) + ( x (1) - x (0) ) + ... + ( x (k) - x (k-1) ).
Но нетрудно вычислить, что
Sk = x (k)). (2.7)
Следовательно, мы тем самым докажем и сходимость итерационной последовательности {x(k)}.
Для доказательства сходимости pяда (2.6) сравним его почленно (без первого слагаемого x(0)) с рядом
q 0 | x (1) - x (0) | + q 1 |x (1) - x (0)| + ... + |x (1) - x (0)| + ..., (2.8)
который сходится как бесконечно убывающая геометрическая прогрессия (так как по условию q < 1). В силу неравенства (2.5) абсолютные величины ряда (2.6) не превосходят соответствующих членов сходящегося ряда (2.8) (то есть ряд (2.8) мажорирует ряд (2.6). Следовательно ряд (2.6) также сходится. Tем самым сходится последовательность {x(0)}.
Получим формулу, дающую способ оценки погрешности
|X - x (k+1)|
метода простой итерации.
Имеем
X - x(k+1) = X - Sk+1 = S∞ - Sk+1 = (x(k+2) - (k+1) ) + (x(k+3) - x(k+2) ) + ... .
Следовательно
|X - x(k+1)| ≤ |x(k+2) - (k+1) | + |x(k+3) - x(k+2) | + ... ≤ qk+1 |x(1) - x(0) | + qk+2 |x(1) - x(0) | + ... = qk+1|x(1) - x(0) | / (1-q).
В результате получаем формулу
|X - x(k+1)| ≤ qk+1|x(1) - x(0) | / (1-q). (2.9)
Взяв за x(0) значение x(k), за x(1) - значение x(k+1) (так как при выполнении условий теоремы такой выбор возможен) и учитывая, что при имеет место неравенство qk+1 ≤ q выводим:
|X - x(k+1)| ≤ qk+1|x(k+1) - x(k) | / (1-q) ≤ q|x(k+1) - x(k) | / (1-q).
Итак, окончательно получаем:
|X - x(k+1)| ≤ q|x(k+1) - x(k) | / (1-q). (2.10)
Используем эту формулу для вывода критерия окончания итерационной последовательности. Пусть уравнение x=φ(x) решается методом простой итерации, причем ответ должен быть найден с точностью ε, то есть
|X - x(k+1)| ≤ ε.
С учетом (2.10) получаем, что точность ε будет достигнута, если выполнено неравенство
|x(k+1)-x(k)| ≤ (1-q)/q. (2.11)
Таким образом, для нахождения корней уравнения x=φ(x) методом простой итерации с точностью нужно продолжать итерации до тех пор, пока модуль разности между последними соседними приближениями остается больше числа ε(1-q)/q.