При решении задачи из примера 2 мы рассматривали L(х;u) как функцию двух переменных
в виде явных функций uполучить нельзя, то значения х и uнаходятся путем решения следующей системы, состоящей из n+1 уравнений с n+1 неизвестными:
Для нахождения всех возможных решений данной системы можно использовать численные методы поиска (например, метод Ньютона). Для каждого из решений (
Метод множителей Лагранжа можно распространить на случай, когда задача имеет несколько ограничений в виде равенств. Рассмотрим общую задачу, в которой требуется
Минимизировать f(x)
при ограничениях
Функция Лагранжа принимает следующий вид:
L(x,u)=f(x)-
Здесь
………..
Если найти решение приведенной выше системы в виде функций вектора uоказывается затруднительным, то можно расширить систему путем включения в нее ограничений в виде равенств
Решение расширенной системы, состоящей из n+К уравнений с n+К неизвестными, определяет стационарную точку функции L. Затем реализуется процедура проверки на минимум или максимум, которая проводится на основе вычисления элементов матрицы Гессе функции L, рассматриваемой как функция х, подобно тому, как это было проделано в случае задачи с одним ограничением. Для некоторых задач расширенная система n+К уравнений с n+K неизвестными может не иметь решений, и метод множителей Лагранжа оказывается неприменимым. Следует, однако, отметить, что такие задачи на практике встречаются достаточно редко.
В предыдущем разделе было установлено, что множители Лагранжа можно использовать при построении критериев оптимальности для задач оптимизации с ограничениями в виде равенств. Кун и Таккер обобщили этот подход на случай общей задачи нелинейного программирования с ограничениями, как в виде равенств, так и в виде неравенств.
Рассмотрим следующую общую задачу нелинейного программирования:
минимизировать
при ограничениях
Определение:
Ограничение в виде неравенства
Если существует возможность обнаружить ограничения, которые неактивны в точке оптимума, до непосредственного решения задачи, то эти ограничения можно исключить из модели и тем самым уменьшить ее размеры. Основная трудность заключается при этом в идентификации неактивных ограничений, предшествующей решению задачи.
Кун и Таккер построили необходимые и достаточные условия оптимальности для задач нелинейного программирования, исходя из предположения о дифференцируемости функций
Найти векторы
Прежде всего проиллюстрируем условия Куна — Таккера на примере.
Пример 3
Минимизировать
при ограничениях
Решение.
Записав данную задачу в виде задачи нелинейного программирования (0)-(2), получим
Уравнение (3), входящее в состав условий Куна—Таккера, принимает следующий вид:
откуда
Неравенства (4) и уравнения (5) задачи Куна — Таккера в данном случае записываются в виде
Уравнения (5.16), известные как условие дополняющей нежесткости, принимают вид
Заметим, что на переменные
Таким образом, этой задачи условия Куна—Танкера записываются в следующем виде:
Для того чтобы интерпретировать условия Куна — Таккера, рассмотрим задачу нелинейного программирования с ограничениями в виде равенств:
минимизировать
при ограничениях
Запишем условия Куна—Таккера
Далее рассмотрим функцию Лагранжа для задачи нелинейного программирования с ограничениями в виде равенств
Для этой функции условия оптимальности первого порядка записываются в виде
Нетрудно видеть, что условия Куна-Таккера (8) и (9) совпадают с условиями оптимальности первого порядка для задачи Лагранжа.
Рассмотрим задачу нелинейного программирования с ограничениями в виде неравенств:
минимизировать
при ограничениях