Методы решения задач безусловной оптимизации отличаются относительно высоким уровнем развития по сравнению с другими методами нелинейного программирования. Ниже речь идет о методах прямого поиска, для реализации которых требуются только значения целевой функции; в следующем разделе рассматриваются градиентные методы и методы второго порядка. Здесь предполагается, что f(x) непрерывна, а
может как существовать, так и не существовать, поскольку соответствующие числовые значения не используются. Однако следует отметить, что методы прямого поиска можно применять для решения задач, в которых существует, и они часто используются в тех случаях, когда представляет собой сложную векторную функцию управляемых переменных. Наконец, в этом и последующих разделах предполагается, что функция f(х) унимодальна в рассматриваемой области. Если же изучаемые методы применяются для анализа мультимодальных функций, то приходится ограничиваться идентификацией локальных минимумов.Многомерные методы, реализующие процедуру поиска оптимума на основе вычисления значений функции, с общих позиций можно разделить на эвристические и теоретические. Эвристические методы, как это следует из названия, реализуют процедуры поиска с помощью интуитивных геометрических представлений и обеспечивают получение частных эмпирических результатов. С другой стороны, теоретические методы основаны на фундаментальных математических теоремах и обладают такими операционными свойствами, как сходимость (по крайней мере при выполнении некоторых определенных условий). Ниже подробно рассматриваются три метода прямого поиска:
1) поиск по симплексу, или S2-метод;
2) метод поиска Хука—Дживса;
3) метод сопряженных направлений Пауэлла.
Первые два из перечисленных методов относятся к категории эвристических и реализуют принципиально различающиеся стратегии поиска. В процессе поиска по S2-методу последовательно оперируют регулярными симплексами в пространстве управляемых переменных, тогда как при реализации метода Хука-Дживса используется фиксированное множество (координатных) направлений, выбираемых рекурсивным способом. Метод Пауэлла основан на теоретических результатах и ориентирован на решение задач с квадратичными целевыми функциями; для таких задач метод сходится за конечное число итераций. К числу общих особенностей всех трех методов следует отнести относительную простоту соответствующих вычислительных процедур, которые легко реализуются и быстро корректируются. С другой стороны, реализация указанных методов может требовать (и часто требует) более значительных затрат времени по сравнению с методами с использованием производных.
Первые попытки решения оптимизационных задач без ограничений на основе прямого поиска связаны с использованием одномерных методов оптимизации. Как правило, при реализации таких методов допустимая область определения показателя качества функционирования системы (целевой функции) заменяется дискретным множеством (решеткой) точек пространства управляемых переменных, а затем используются различные стратегии уменьшения области, которая содержит решение задачи. Часто эта процедура оказывается эквивалентной равномерному поиску в узлах решетки и, следовательно, непригодной для решения задач с числом переменных, превышающим 2. Более полезная идея заключается в выборе базовой точки и оценивании значений целевой функции в точках, окружающих базовую точку. Например, при решении задачи с двумя переменными можно воспользоваться квадратным образцом, изображенным на рис.2
Рис 2. Квадратный образец (частный случай кубического образца)
Затем «наилучшая» из пяти исследуемых точек выбирается в качестве следующей базовой точки, вокруг которой строится аналогичный образец. Если ни одна из угловых точек не имеет преимущества перед базовой, размеры образца следует уменьшить, после чего продолжить поиск.
Этот тип эволюционной оптимизации был использован Боксом и другими исследователями для анализа функционирования промышленных предприятий, когда эффект варьирования значений переменных, описывающих производственные процессы, измеряется с ошибкой. В задачах большой размерности вычисление значений целевой функции проводится во всех вершинах, а также в центре тяжести гиперкуба (гиперкуб – куб в n-мерном евклидовом пространстве, т.е. множество S={x=(
) | } , где а и b – заданные числа ) , т. е. в точках так называемого кубического образца. Если количество переменных (размерность пространства, в котором ведется поиск) равно n, то поиск по кубическому образцу требует +1 вычислений значения функций для одного образца. При увеличении размерности задачи необходимое количество вычислений значения целевой функции возрастает чрезвычайно быстро. Таким образом, несмотря на логическую простоту поиска по кубическому образцу, возникает необходимость использования более эффективных методов прямого поиска для решения возникающих на практике задач оптимизации.Одна из вызывающих особый интерес стратегий поиска положена в основу метода поиска по симплексу, предложенного Спендли, Хекстом и Химсвортом. Следует отметить, что указанный метод и другие подобные методы не имеют отношения к симплекс-методу линейного программирования, а сходство названий носит случайный характер. Процедура симплексного поиска Спендли, Хекста и Химсворта базируется на том, что экспериментальным образцом, содержащим наименьшее количество точек, является регулярный симплекс. Регулярный симплекс в n-мерном пространстве представляет собой многогранник, образованный n+1 равностоящими друг от друга точками-вершинами. Например, в случае двух переменных симплексом является равносторонний треугольник; в трехмерном пространстве симплекс представляет собой тетраэдр. В алгоритме симплексного поиска используется важное свойство симплексов, согласно которому новый симплекс можно построить на любой грани начального симплекса путем переноса выбранной вершины на надлежащее расстояние вдоль прямой, проведенной через центр тяжести остальных вершин начального симплекса. Полученная таким образом точка является вершиной нового симплекса, а выбранная при построении вершина начального симплекса исключается. Нетрудно видеть, что при переходе к новому симплексу требуется одно вычисление значения целевой функции. Рис 3 иллюстрирует процесс построения нового симплекса на плоскости.
Рис.3.Построение нового симплекса.
а – начальный симплекс
б – новый симплекс
Работа алгоритма симплексного поиска начинается с построения регулярного симплекса в пространстве независимых переменных и оценивания значений целевой функции в каждой из вершин симплекса. При этом определяется вершина, которой соответствует наибольшее значение целевой функции. Затем найденная вершина проецируется через центр тяжести остальных вершин симплекса в новую точку, которая используется в качестве вершины нового симплекса. Если функция убывает достаточно плавно, итерации продолжаются до тех пор, пока либо не будет накрыта точка минимума, либо не начнется циклическое движение по двум или более симплексам. В таких ситуациях можно воспользоваться следующими тремя правилами.
Правило 1. «Накрытие» точки минимума
Если вершина, которой соответствует наибольшее значение целевой функции, построена на предыдущей итерации, то вместо нее берется вершина, которой соответствует следующее по величине значение целевой функции.
Правило 2. Циклическое движение
Если некоторая вершина симплекса не исключается на протяжении более чем М итераций, то необходимо уменьшить размеры симплекса с помощью коэффициента редукции и построить новый симплекс, выбрав в качестве базовой точку, которой соответствует минимальное значение целевой функции. Спендли, Хекст и Химс-ворт предложили вычислять М по формуле
M=1,65n+0,05
где n — размерность задачи, а М округляется до ближайшего целого числа. Для применения данного правила требуется установить величину коэффициента редукции.
Правило 3. Критерий окончания поиска
Поиск завершается, когда или размеры симплекса, или разности между значениями функции в вершинах становятся достаточно малыми. Чтобы можно было применять эти правила, необходимо задать величину параметра окончания поиска.
Реализация изучаемого алгоритма основана на вычислениях двух типов: (1) построении регулярного симплекса при заданных базовой точке и масштабном множителе и (2) расчете координат отраженной точки. Построение симплекса является достаточно простой процедурой, так как из элементарной геометрии известно, что при заданных начальной (базовой) точке
и масштабном множителе координаты остальных n вершин симплекса в n-мерном пространстве вычисляются по формуле