Смекни!
smekni.com

Обзор и анализ нейросетей (стр. 2 из 3)

1.4 Структура и принципы работы нейронной сети

В качестве модели нейрона был выбран бинарный пороговый элемент, вычисляющий взвешенную сумму входных сигналов и формирующий на выходе сигнал величины 1, если эта сумма превышает определенное пороговое значение, и 0 – в противном случае. К настоящему времени данная модель не претерпела серьезных изменений. Были введены новые виды активационных функций. Структурная модель технического нейрона представлена на рисунке 1.3

Рисунок 1.3 Формальная модель искусственного нейрона

На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона, или входным сигналом нейросетевой модели. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе биологического нейрона. Вес определяет, насколько соответствующий вход нейрона влияет на его состояние. Все произведения суммируются, определяя уровень активации нейрона s. Состояние нейрона определяется по формуле.

, (1.1)

где φ – множество сигналов, поступающих на вход нейрона,

wi – весовые коэффициенты нейрона.

Далее сигнал s преобразуется активационной (передаточной) функцией нейрона F в выходной сигнал y. Математически это можно выразить формулой:

, (1.2)

где n – размерность вектора входов,

w0 – «нейронное смещение», вводимое для инициализации сети, - подключается к неизменяемому входу +1,

F– активационная функция нейрона.

Нейроны могут группироваться в сетевую структуру различным образом. Функциональные особенности нейронов и способ их объединения в сетевую структуру определяет особенности нейросети. Для решения задач идентификации и управления наиболее адекватными являются многослойные нейронные сети (МНС) прямого действия или многослойные персептроны. При проектировании МНС нейроны объединяют в слои, каждый из которых обрабатывает вектор сигналов от предыдущего слоя. Минимальной реализацией является двухслойная нейронная сеть, состоящая из входного (распределительного), промежуточного (скрытого) и выходного слоя.


Рисунок 1.4 Структурная схема двухслойной нейронной сети.

Реализация модели двухслойной нейронной сети прямого действия имеет следующее математическое представление:

, (1.7)

где nφ – размерность вектора входов φ нейронной сети;

nh – число нейронов в скрытом слое;

θ – вектор настраиваемых параметров нейронной сети, включающий весовые коэффициениы и нейронные смещения (wji, Wij)

fj(x) – активационная функция нейронов скрытого слоя;

Fi(x) – активационная функция нейронов выходного слоя.

Персептрон представляет собой сеть, состоящую из нескольких последовательно соединенных слоев формальных нейронов (рисунок 1.3). На низшем уровне иерархии находится входной слой, состоящий из сенсорных элементов, задачей которого является только прием и распространение по сети входной информации. Далее имеются один или, реже, несколько скрытых слоев. Каждый нейрон на скрытом слое имеет несколько входов, соединенных с выходами нейронов предыдущего слоя или непосредственно со входными сенсорами φ1..φn, и один выход. Нейрон характеризуется уникальным вектором настраиваемых параметров θ. Функция нейрона состоит в вычислении взвешенной суммы его входов с дальнейшим нелинейным преобразованием ее в выходной сигнал:

1.5 Обучение нейронной сети

Следующий этап создания нейросети – это обучение. Способность к обучению является основным свойством мозга. Для искусственных нейронных сетей под обучением понимается процесс настройки архитектуры сети (структуры связей между нейронами) и весов синаптических связей (влияющих на сигналы коэффициентов) для эффективного решения поставленной задачи. Обычно обучение нейронной сети осуществляется на некоторой выборке. По мере процесса обучения, который происходит по некоторому алгоритму, сеть должна все лучше и лучше (правильнее) реагировать на входные сигналы.

Выделяют три типа обучения: с учителем, самообучение и смешанный. В первом способе известны правильные ответы к каждому входному примеру, а веса подстраиваются так, чтобы минимизировать ошибку. Обучение без учителя позволяет распределить образцы по категориям за счет раскрытия внутренней структуры и природы данных, выходы НС формируются самостоятельно, а веса изменяются по алгоритму, учитывающему только входные и производные от них сигналы. При смешанном обучении комбинируются два вышеизложенных подхода.

Поскольку ошибка зависит от весов нелинейно, получить решение в аналитической форме невозможно, и поиск глобального минимума осуществляется посредством итерационного процесса – так называемого обучающего алгоритма. Разработано уже более сотни разных обучающих алгоритмов, отличающихся друг от друга стратегией оптимизации и критерием ошибок. Обычно в качестве меры погрешности берется средняя квадратичная ошибка (СКО):

(1.8)

где М – число примеров в обучающем множестве;

d – требуемый выходной сигнал;

y – полученный выходной сигнал.

Обучение нейросети производится методом градиентного спуска, т. е. на каждой итерации изменение веса производится по формуле.

, (1.9)

где e – коэффициент обучения, определяющий скорость обучения.

Отметим два свойства полной ошибки. Во-первых, ошибка E=E(W) является функцией состоянияW, определенной на пространстве состояний. По определению, она принимает неотрицательные значения. Во-вторых, в некотором обученном состоянии W*, в котором сеть не делает ошибок на обучающей выборке, данная функция принимает нулевое значение. Следовательно, обученные состояния являются точками минимума введенной функции E(W).

Таким образом, задача обучения нейронной сети является задачей поиска минимума функции ошибки в пространстве состояний

1.6 Нейросетевые системы управления

Нейроуправление представляет собой новое высокотехнологичное направление в теории управления, активно развивающееся во всем мире с конца 70-х годов. Нейронные сети являются предметом исследования целого ряда дисциплин. С точки зрения теории управления нейронные сети выбираются в качестве модели объекта управления или непосредственно регулятора, а динамический процесс ее настройки представляет собой процесс синтеза системы управления.

Проблема синтеза регуляторов рассматривается с двух позиций, а именно: прямые методы и косвенные методы синтеза нейросетевых систем управления:

· прямые методы синтеза – регулятор реализуется непосредственно на нейросети. Применение метода не вызывает трудностей, однако необходимость постоянного переобучения нейросети приводит к ряду проблем;

1) косвенные методы синтеза – нейросеть используется в качестве модели объекта управления, а синтез регулятора осуществляется традиционным методом.

В общем случае управление объектом с помощью нейросети можно представить схемой на рисунке 1.5

Рисунок 1.5 Управление при помощи нейроконтроллера.

При этом обучение самого нейроконтроллера непосредственно по входным данным объекта может быть произведено с помощью схемы, представленной на рисунке 1.6 с применением наиболее распространенного алгоритма.


Рисунок 1.6. Обучение нейроконтроллера при помощи алгоритма обратного распространения ошибки.


2.1 Разработка нейросевого регулятора с наблюдающим устройством. Использование нейроконтроллера Model Reference Control

В качестве примера использования нейросети показан нейросетевой регулятор с наблюдающим устройством. Данный регулятор компенсирует нелинейную составляющую ускорения манипулятора, обусловленную действием силы тяжести. Объект управления и его математическое описание представлены ниже.

Рука вращается в вертикальной плоскости и имеет одну степень свободы.

Рисунок 3.1 Схема движения руки робота

Уравнение движения руки робота:

(3.1)

где φ – угол поворота руки, u – вращающий момент двигателя постоянного тока.

Составляющая ускорения -10sinφ учитывает силу тяжести.

Необходимо, чтобы рука робота двигалась в соответствии с уравнением:


(3.2)

Математическое описание объекта управления.

В качестве исходной динамической системы используется объект управления, описываемый уравнением (3.1). Сделаем замену

и
.