Смекни!
smekni.com

Обработка информации и принятие решения в системах ближней локации (стр. 2 из 6)

Плотность показательного распределения отлична от нуля только для неотрицательных значений х. В нуле она принимает максимальное значение, равное a. С ростом х она убывает, оставаясь вогнутой и асимптотически приближаясь к 0. Выражение для плотности показательного распределения:

(6)

а для функции распределения:

(7)

Показательно распределение является однопараметрическим: функция и плотность его зависят от одного параметра a.

Обратите внимание: в MATLAB параметр показательного распределения – это величина, обратная a в формулах (6 – 7).

Плотность равномерного распределения отлична от нуля только в заданном интервале [a, b], и принимает в этом интервале постоянное значение:

(8)

Функция равномерного распределения левее точки а равна нулю, правее b – единице, а в интервале [a, b] изменяется по линейному закону:

(9)

Равномерное распределение – двухпараметрическое, т. к. в выражения для F(x) и f(x) входят 2 параметра: а и b. По равномерному закону распределены ошибка округления и фаза случайных колебаний. В MATLAB плотность и функция равномерного распределения могут быть посчитаны с помощью функций unifpdf и unifcdf, а также с помощью функций pdf и cdf с первым параметром ‘unif’.

Плотность рэлеевского распределения отлична от нуля только для неотрицательных значений х. От нуля она выпуклая и возрастает дол некоторого максимального значения. Далее с ростом х она убывает, оставаясь выпуклой. Затем становится вогнутой, продолжая убывать, и асимптотически приближается к 0. Выражение для плотности рэлеевского распределения имеет вид:


(10)

Функция рэлеевского распределения:

(11)

Это распределение однопараметрическое: оно зависит от одного параметра s. По рэлеевскому закону распределено расстояние от точки попадания в мишень до ее центра. Вычисление плотности и функции рэлеевского распределения в MATLAB реализовано с помощью функций raylpdf,raylcdfили функцийpdf,cdfс превым параметром ‘rayl ‘.

Практическая часть.

tdistr={'norm', 'exp', 'unif', 'rayl'};% названия

pardistr=[[2 1]; [2,0]; [0 4]; [1 0]];% параметры

ndistr=length(tdistr);% количество распределений

xpl=[-1:0.01:5]';% абсциссы для графиков

foridistr=1:ndistr, % заполняем и строим графики

ypdf=pdf (tdistr{idistr}, xpl,…

pardistr (idistr, 1), pardistr (idistr, 2));% ординаты

figure% новая фигура

plot (xpl, ypdf);% рисуем

set (get(gcf, 'CurrentAxes'),…

'FontName', 'Times New Roman Cyr', 'FontSize', 12)

title(['\bfПлотность распределения ' tdistr{idistr}])

end;

Рисунок 5 – плотность распределения амплитуды сигнала по нормальному закону

Рисунок 6 – плотность распределения амплитуды сигнала по экспоненциальному закону

Рисунок 7 – равномерная плотность распределения амплитуды сигнала


Рисунок 8 – плотность распределения амплитуды сигнала по Релеевскому закону

На практике могут встретиться и другие виды распределений (b, c2, логнормальное, Вейбулла и т.д.). Многие из них реализованы в MATLAB, но иногда приходится писать свои функции.

Графики некоторых плотностей распределения похожи между собой, поэтому иногда вид гистограммы позволяет выбрать сразу несколько законов. Если есть какие-либо теоретические соображения предпочесть одно распределение другому, можно их использовать. Если нет – нужно проверить все подходящие законы, а затем выбрать тот, для которого критерии согласия дают лучшие результаты.

1.3 Оценка параметров распределения случайных величин для четырех законов

В выражениях для плотности и функции нормального распределения (4 – 5) параметры m и s являются математическим ожиданием и среднеквадратичным отклонением. Поэтому, если мы остановились на нормальном распределении, то берем их равными, соответственно, выборочным математическому ожиданию и среднеквадратичному отклонению:


. (12)

Математическое ожидание показательного распределения есть величина, обратная его параметру a. Поэтому, если мы выбрали показательное распределение, параметр a находим:

(13)

Из выражений для mx и sx равномерного закона распределения находим его параметры a и b:

;
. (14)

Параметр s рэлеевского распределения также находится из выражения для mx

(15)

В системе MATLAB вычисление параметров теоретического распределения с помощью ПМП реализовано в функциях fit или mle. Подбор по методу моментов не реализован. Найдем параметры теоретического распределения по ПМП и методу моментов.

Практическая часть.

s={'нормальное распределение'; 'показательное распределение';…

'равномерное распределение'; 'Рэлеевское распределение'};

disp('Параметры по ПМП:')

[mx, sx]=normfit(x);% параметры нормального распределения

lam=1/expfit(x);% параметр показательного распределения

[a, b]=unifit(x);% параметры равномерного распределения

sig=raylfit(x);% параметр Рэлеевского распределения

fprintf([' % s: m=%12.7f; sigma=%12.7f\n'], s{1}, mx, sx)

fprintf (' % s: alpha=%12.7f\n', s{2}, lam)

fprintf (' % s: a=%12.7f; b=%12.7f\n', s{3}, a, b)

fprintf (' % s: sigma=%12.7f\n', s{4}, sig)

Длясигналагусеничнойтехники:

Параметры по ПМП:

нормальное распределение: m= 0.0060038; sigma= 0.0203706

показательное распределение: alpha= 166.5608494

равномерное распределение: a= -0.0962308; b= 0.0942564

Рэлеевское распределение: sigma= 0.0150166

Для фонового сигнала:

Параметры по ПМП:

нормальное распределение: m= 0.0188599; sigma= 0.0005663

показательное распределение: alpha= 53.0224920

равномерное распределение: a= 0.0106122; b= 0.0210241

Рэлеевское распределение: sigma= 0.0133420

disp('Параметры по методу моментов:')

mx=Mx;

sx=Sx;% параметры нормального распределения

lam=abs(1/Mx);% параметр показательного распределения

a=Mx-Sx*3^0.5;

b=Mx+Sx*3^0.5;% параметры равномерного распределения

sig=abs(Mx)*(2/pi)^0.5;% параметр Рэлеевского распределения

fprintf([' % s: m=%12.7f; sigma=%12.7f\n'], s{1}, mx, sx)

fprintf (' % s: alpha=%12.7f\n', s{2}, lam)

fprintf (' % s: a=%12.7f; b=%12.7f\n', s{3}, a, b)

fprintf (' % s: sigma=%12.7f\n', s{4}, sig)

Длясигналагусеничнойтехники:

Параметры по методу моментов:

нормальное распределение: m= 0.0060038; sigma= 0.0203706

показательное распределение: alpha= 166.5608494

равномерное распределение: a= -0.0292791; b= 0.0412867

Рэлеевское распределение: sigma= 0.0047903

Для фонового сигнала:

Параметры по методу моментов:

нормальное распределение: m= 0.0188599; sigma= 0.0005663

показательное распределение: alpha= 53.0224920

равномерное распределение: a= 0.0178790; b= 0.0198409

Рэлеевское распределение: sigma= 0.0150480

Вывод: из результатов, полученных двумя методами видно, что оценки плотностей распределения вероятностей для равномерного и рэлеевского законов по первому методу отличаются от плотностей распределения вероятностей по второму методу.

Оценки показательных и нормальных законов плотностей распределения вероятностей по обоим методам практически совпадают.

1.4 Построение на одном графике теоретического и практического распределения для формулировки гипотезы

Построим на одном графике теоретическую и эмпирическую плотности распределения вероятности. Эмпирическая плотность распределения – это гистограмма, у которой масштаб по оси ординат изменен таким образом, чтобы площадь под кривой стала равна единице. Для этого все значения в интервалах необходимо разделить на nh, где n – объем выборки, h – ширина интервала при построении гистограммы. Теоретическую плотность распределения вероятности строим по одному из выражений (4), (6), (8), (10), параметры для них уже вычислены. Эмпирическую плотность распределения нарисуем красной линией, а предполагаемую теоретическую – линией одного из цветов: синего, зеленого, сиреневого или черного.

Практическая часть.

[nj, xm]=hist(x, k);% число попаданий и середины интервалов

delta=xm(2) – xm(1);% ширина интервала

clearxfvfvxftft% очистили массивы для f(x)

xfv=[xm-delta/2; xm+delta/2];% абсциссы для эмпирической f(x)

xfv=reshape(xfv, prod(size(xfv)), 1);% преобразовали в столбец

xfv=[xl; xfv(1); xfv; xfv(end); xr];% добавили крайние

fv=nj/(n*delta);% значения эмпирической f(x) в виде 1 строки

fv=[fv; fv];% 2 строки

fv=[0; 0; reshape(fv, prod(size(fv)), 1); 0; 0];% + крайние, 1 столбец

xft=linspace(xl, xr, 1000)';% абсциссы для теоретической f(x)

ft=[normpdf (xft, mx, sx), exppdf (xft, 1/lam),…