Смекни!
smekni.com

Обработка информации и принятие решения в системах ближней локации (стр. 3 из 6)

unifpdf (xft, a, b), raylpdf (xft, sig)];

col='bgmk';% цвета для построения графиков

figure

plot (xfv, fv, '-r', xft, ft(:, 1), col(1), xft, ft(:, 2), col(2),…

xft, ft(:, 3), col(3), xft, ft(:, 4), col(4)) % рисуем

set (get(gcf, 'CurrentAxes'),…

'FontName', 'Times New Roman Cyr', 'FontSize', 12)

title('\bfПлотности распределения')

xlim([xlxr]), ylim([0 1.4*max(fv)])% границы рисунка по осям

xlabel('\itx')% метка оси x

ylabel('\itf\rm(\itx\rm)')% метка оси y

grid


Рис. 9 – График плотности распределения вероятности сигнала гусеничной техники и графики нормального, рэлеевского, показательного и равномерного законов плотностей распределения вероятности

Рис. 10 – График плотности распределения вероятности фонового сигнала и графики нормального, рэлеевского, показательного и равномерного законов плотностей распределения вероятности

Вывод: из рисунка 9 видно, что наиболее подходящим теоретическим распределением для первой эмпирической гистограммы является нормальное.

Реальный закон распределения амплитуд фонового сигнала также подчиняется нормальному закону.


1.5 Проверка гипотезы по критерию Колмогорова-Смирнова

Мы подобрали вид теоретического распределения и его параметры. Следующий этап – это проверка правильности подбора. Необходимо выяснить: насколько хорошо теоретическое распределение согласуется с данными. С этой целью используются критерии согласия Колмогорова-Смирнова или Пирсона., во втором – f(x) и f*(x).

Критерий согласия Колмогорова. В этом случае сравниваются теоретическая F(x) и выборочная F*(x) функции распределения. Сравниваемым параметром является максимальная по модулю разность между двумя функциями

. (16)

С точки зрения выборочного метода F*(x) является случайной функцией, так как от выборки к выборке ее вид меняется, поэтому величина D является случайной. Согласно теореме Гливенко-Кантелли с ростом объема выборки эта величина сходится к нулю. Колмогоров А.Н. выяснил, как именно D сходится к нулю. Он рассмотрел случайную величину

(17)

и нашел ее закон распределения. Как оказалось, при достаточно больших n он вообще не зависит от закона распределения генеральной совокупности X. Причем функция распределения случайной величины L имеет вид


. (18)

Если опытные данные x действительно взяты из генеральной совокупности с функцией распределения F(x), то вычисленная по выражению (18) реализация l случайной величины L на уровне значимости q должна лежать в квантильных границах распределения Колмогорова (18). При этом, если l малое (выходит за «левый» квантиль), то нулевая гипотеза принимается: теоретическое распределение согласуется с опытными данными. В общем случае нулевая гипотеза принимается, если выполняется условие

l £ l1-q. (19)

Данный критерий называется еще критерием Колмогорова-Смирнова.

Таким образом, для применения критерия согласия Колмогорова-Смирнова, мы должны найти максимальную по модулю разность между выборочной и теоретической функциями распределения D по выражению (16), вычислить по ней l и проверить условие (19).

Практическая часть.

param=[[mxsx]; [lam 0]; [ab]; [sig 0]];% параметры распределений

qq=[];% критические уровни значимости

foridistr=1:ndistr, % критерий Колмогорова

[hkolm, pkolm, kskolm, cvkolm]=…

kstest(x, [xcdf(tdistr{idistr}, x,…

param(idistr, 1), param(idistr, 2))], 0. 1,0);

qq=[qqpkolm];% критические уровни значимости

end

[maxqq, bdistr]=max(qq);% выбрали лучшее распределение

fprintf(['Лучше всего подходит % s;\nкритический уровень '…

'значимости для него =%8.5f\n'], s{bdistr}, maxqq);

figure

cdfplot(x);% эмпирическая функция распределения

xpl=linspace(xl, xr, 500);% для графика F(x)

ypl=cdf (tdistr{bdistr}, xpl, param (bdistr, 1), param (bdistr, 2));

holdon% для рисования на этом же графике

plot(xpl, ypl, 'r');% дорисовали F(x)

hold off

set (get(gcf, 'CurrentAxes'),…

'FontName', 'Times New Roman Cyr', 'FontSize', 12)

title(['\bfПодобрано ' s{bdistr}])

xlabel ('\itx')% метка оси x

ylabel ('\itf\rm (\itx\rm)')% метка оси y

Результат:

Лучше всего подходит нормальное распределение;

критический уровень значимости для него = 0.31369

Рис. 11 – График эмпирической функции распределения для сигнала гусеничной техники


Рис. 12 – График эмпирической функции распределения для фонового сигнала

Найденный критический уровень значимости – это то значение q, при котором неравенство (19) обращается в равенство.

Вывод:По полученным результатам можно сделать вывод, что по данному критерию распределение подобранно верно.

1.6 Проверка гипотезы по критерию согласия Пирсона

По критерию Пирсона сравниваются теоретическая и эмпирическая функции плотности распределения вероятности, а точнее – частота попадания случайной величины в интервал. Интервалы могут быть любыми, равными и неравными, но удобно использовать те интервалы, на которых построена гистограмма. Эмпирические числа попадания n (из гистограммы) сравнивается с теоретическим npj, где pj – вероятность попадания случайной величины X в j-ый интервал:

, (20)

ajи bj – границы j-го интервала. Карл Пирсон показал, что, если все npj³ 5, то суммарная квадратическая относительная разность между теоретическим и практическим числом попаданий в интервал равна

(21)

имеет приближенно c2 распределение Пирсона с km степенями свободы, где m – число параметров, оцениваемых по выборке, плюс 1. Так как параметров два, то m = 3. Выражение (21) представляет собой статистику Пирсона.

Теоретическое распределение можно считать подобранным верно, если выполняется условие

. (22)

Построим таблицу результатов, в которую занесем: номера интервалов (1-й столбец), границы интервалов ajи bj (2-й и 3-й столбцы), вероятность попадания в интервал pj (4-й столбец), теоретическое число попаданий и практическое число попаданий npj(6-й столбец). Границы интервалов и практическое число попаданий взяты из гистограммы, теоретическая вероятность попадания в j-й интервал подсчитывается по выражению (20).

Практическая часть.

clearTabl% очистили таблицу результатов

Tabl(:, 1)=[1:k]';% номера интервалов

Tabl(:, 2)=xm'-delta/2;% левые границы интервалов

Tabl(:, 3)=xm'+delta/2;% правые границы интервалов

Tabl(1,2)=-inf;% теоретическое начало 1-го интервала

Tabl(k, 3)=inf;% теоретический конец последнего интервала

Tabl(:, 4)=nj';% опытные числа попаданий

bor=[Tabl(:, 2); Tabl(end, 3)];% все границы интервалов

pro=cdf (tdistr{bdistr}, bor, param (bdistr, 1), param (bdistr, 2));

Tabl(:, 5)=pro (2:end) – pro (1:end-1);% вероятности попаданиz pj

Tabl(:, 6)=n*Tabl(:, 5);% теоретическоечислопопаданийnpj

disp('Сводная таблица результатов')

fprintf(' jajbj')

fprintf (' njpjnpj\n')

fprintf (' % 2.0f % 12.5f % 12.5f % 6.0f % 12.5f % 12.5f\n', Tabl')

Для сигнала гусеничной техники:

Сводная таблица результатов

j aj bj nj pj npj

1 – Inf -0.09544 2 0.00000 0.01837

2 -0.09544 -0.09464 2 0.00000 0.00408

3 -0.09464 -0.09385 0 0.00000 0.00495

4 -0.09385 -0.09306 1 0.00000 0.00599

5 -0.09306 -0.09226 1 0.00000 0.00724

6 -0.09226 -0.09147 0 0.00000 0.00873

7 -0.09147 -0.09067 0 0.00000 0.01052

8 -0.09067 -0.08988 4 0.00000 0.01266

9 -0.08988 -0.08909 0 0.00000 0.01520

10 -0.08909 -0.08829 0 0.00000 0.01824

11 -0.08829 -0.08750 2 0.00000 0.02184

12 -0.08750 -0.08671 2 0.00000 0.02612

13 -0.08671 -0.08591 0 0.00000 0.03118

14 -0.08591 -0.08512 3 0.00000 0.03718

15 -0.08512 -0.08433 1 0.00000 0.04425

Для фонового сигнала:

Сводная таблица результатов

jajbjnjpjnpj

1 – Inf0.01067 1 0.00000 0.00000

2 0.01067 0.01074 0 0.00000 0.00000

3 0.01074 0.01080 0 0.00000 0.00000

4 0.01080 0.01086 0 0.00000 0.00000

5 0.01086 0.01092 0 0.00000 0.00000

6 0.01092 0.01098 0 0.00000 0.00000

7 0.01098 0.01104 0 0.00000 0.00000

8 0.01104 0.01111 0 0.00000 0.00000

9 0.01111 0.01117 0 0.00000 0.00000

10 0.01117 0.01123 0 0.00000 0.00000

11 0.01123 0.01129 0 0.00000 0.00000

12 0.01129 0.01135 0 0.00000 0.00000

13 0.01135 0.01141 0 0.00000 0.00000

14 0.01141 0.01147 0 0.00000 0.00000

15 0.01147 0.01154 0 0.00000 0.00000

Если распределение подобрано, верно, то числа из 4-го и 6-го столбцов не должны сильно отличаться.

Вывод: Для сигнала гусеничной техники числа из 4-го и 6-го столбцов значительно отличаются, значит, распределение подобрано неверно. А для фонового сигнала эти числа практически совпадают.

Проверим выполнение условия npj³ 5 и объединим те интервалы, в которыхnpj< 5. Перестроим таблицу и добавим в нее еще один, 7-й столбец – слагаемое, вычисляемое по выражению (21).

Практическая часть.

qz=0.3;% выбрали уровень значимости

ResTabl=Tabl (1,1:6);% взяли первую строку

for k1=2:k, % берем остальные строки таблицы

if ResTabl (end, 6)<5, % предыдущее npj<5 – будем суммировать

ResTabl (end, 3)=Tabl (k1,3);% новая правая граница интервала

ResTabl (end, 4:6)=ResTabl (end, 4:6)+Tabl (k1,4:6);% суммируем

else% предыдущее npj>=5 – будем дописывать строку

ResTabl=[ResTabl; Tabl (k1,1:6)];% дописываемстроку

end

end

if ResTabl (end, 6)<5, % последнее npj<5

ResTabl (end – 1,3)=ResTabl (end, 3);% новаяправаяграница

ResTabl (end – 1,4:6)=ResTabl (end – 1,4:6)+ResTabl (end, 4:6);

ResTabl=ResTabl (1:end-1,:);% отбросили последнюю строку

end

kn=size (ResTabl, 1);% число объединенных интервалов

ResTabl(:, 1)=[1:kn]';% новые номера интервалов

ResTabl(:, 7)=(ResTabl(:, 4) – ResTabl(:, 6)).^2./ResTabl(:, 6);

disp ('Сгруппированная сводная таблица результатов')

fprintf (' jajbj')

fprintf (' njpjnpj')

fprintf([' (nj-npj)^2/npj&bsol;n'])

fprintf (' % 2.0f % 12.5f % 12.5f % 6.0f % 12.5f % 12.5f % 12.5f&bsol;n', ResTabl')

hi2=sum (ResTabl(:, 7));% сумма элементов последнего столбца