Смекни!
smekni.com

Общие сведения о счетчиках (стр. 2 из 2)

Рис.13.5. Схема асинхронного вычитающего счетчика по модулю 1

Отличие данной схемы от схемы суммирующего счетчика (рис.13.1) состоит в способе переноса сигнала от триггера к триггеру. В суммирующем счетчике синхронизирующий вход каждого триггера связан с прямым выходом Q предыдущего триггера. В вычитающем счетчике синхронизирующий вход каждого триггера связан с инверсным выходом

предыдущего триггера. В счетчике изображенном на рис.13.5, перед началом счета в обратном направлении предусмотрена предварительная его установка в состояние 111 (десятичное число 7) с помощью входа предустановки (S). Счетная последовательность двоичных чисел приведена в табл.13.3.

Таблица 13.3.

Счетная последовательность импульсов

Самоостанавливающиеся счетчики

Вычитающий счетчик, схема которого показана на рис.13.5 — счетчик циклического типа. Когда этот счетчик приходит в состояние 000, он снова начинает счет с двоичного числа 111. В некоторых случаях нужны счетчики, которые останавливаются, когда исчерпывается вся счетная последовательность. Рассмотрим, какие изменения нужно внести в схему вычитающего счетчика, чтобы счет прекращался при достижении состояния 000.

Рис.13.6. Схема самоостанавливающегося счетчика

Из рис.13.6 видно, что для этого нужно ввести в схему логический элемент ИЛИ, который будет устанавливать на входах J и K триггера T1 уровень логического 0, когда на выходах (C, B, A) счетчика появится сигнал 000. Если нужно начать новый цикл счета с двоичного числа 111, на вход предустановки S следует подать уровень логического 0.

Используя один логический элемент или их комбинацию, можно останавливать счет прямом и обратном направлении, на любом наперед заданном двоичном числе. Выход логического элемента нужно для этого присоединить к входам J и K первого триггера в асинхронном счетчике. При этом триггер T1 переводится в режим хранения.

Счетчики — делители частоты

Одной из функций которую выполняют счетчики в цифровых системах, является деление частоты. Пример простой системы с делителем частоты показан на рис.13.7. Эта система составляет основу цифровых часов. Периодический сигнал электросети с частотой 50 Гц, сформированный в виде последовательности прямоугольных импульсов, подается на вход системы, которая делит частоту на 50.

Рис.13.7. Система с делителем частоты

На выходе схемы имеем последовательность прямоугольных импульсов с частотой 1 Гц (1 импульс в 1 сек). Это таймер секунд.

На рис.13.8 схематически изображен декадный счетчик, а на рис.13.9 приведены временные диаграммы для его синхронизирующего входа C и выхода QD, соответствующего двоичному разряду восьмерок.

Рис.13.8. Схема декадного счетчика

Рис.13.9. Временные диаграммы декадного счетчика

Из рис.13.9 видно, что 20 импульсов на входе счетчика преобразуются в 2 выходных импульса. Выполняется деление 20/2=10. Снимая сигнал с входа QD, декадного счетчика, получим счетчик‑делитель на 10. Т.е. частота выходного сигнала состовляет 1/10 частоты на входе счетчика.

Последовательно соединяя рассмотренный декадный счетчик (счетчик‑делитель на 10) и по модулю 5 (счетчик‑делитель на 5) получим схему, осуществляющую деления частоты на 50. Структура такой схемы показана на рис.13.10. Последовательность прямоугольных импульсов с частотой 50 Гц поступает на вход счетчика - делителя на 5, а с его выхода с частотой 10 Гц подается на вход счетчика‑делителя на 10. На выходе схемы получим сигнал с частотой 1 Гц.

Рис.13.10. Структурная схема делителя частоты на 50

Функция деления частоты используется в таких цифровых устройствах, как частотомер, осциллограф и т.п.

Интегральные схемы счетчиков

На рис.13.11 представлена схема четырехразрядного двоичного счетчика‑делителя на 2, на 6 и на 12 (К155ИЕ4).

Рис.13.11. Схема четырехразрядного двоичного счетчика

Если подать тактовые импульсы с частотой f на вход С1, то на выходе А получим частоту f/2. Тактовые импульсы с частотой f на входе С2 запускают делитель на 6 и на выходе D имеем частоту f/6. При этом на выходах B и C имеем импульсы с частотой f/3. На выводы R1 и R2 подаются команды сброса. Для построения счетчика с модулем деления 12, требуется соединить делители на 1 и на 6, соединив выход А со входом С2. На вход С1 подается входная частота f, на выходе D получаем последовательность импульсов с частотой f/12.

Проектирование счетчиков

Рассмотрим пример структурного проектирования счетчиков. Выполним синтез структуры суммирующего синхронного (параллельного) счетчика по модулю 10 на JK‑триггерах. Следует отметить, что синхронные счетчики обычно строятся на базе RS, JK, D‑триггеров, синхронизируемых фронтом.

Для реализации счетчика требуется не менее 4 триггеров, поскольку трех триггеров недостаточно 23<10. Чтобы получить структуру с минимальным числом триггеров, примем m=4 (четырехразрядный счетчик). При этом 2m-M=24-10=6 состояний счетчика будут нештатаными. Рассмотрим таблицу состояний счетчика (табл. 13.4.), в которой в последних четырех столбцах показана функция переходов F для каждого разряда.

Таблица 13.4.

Таблица состояний счетчика

Функция переходов показывает изменения (или сохранения) состояния разряда в зависимости от значений управляющих сигналов. Эта функция принимает следующие значения

переход из состояния Qn=0 в Qn+1=1,

переход из состояния Qn=1 в Qn+1=0,

сохранение состояния Qn=Qn+1=0,

сохранение состояния Qn=Qn+1=1.

Используя таблицу состояний счетчика (табл. 13.4) для каждого разряда представляем функцию переходов в виде карты Карно (рис. 13.12).

Рис. 13.12. Карты Карно для функции переходов

В клетках карты указываются значения функции переходов. Знаком «X» обозначаются безразличные наборы, которые соответствуют нештатным состояниям счетчика.

Определив для каждого из значений FQ соответствующие ему значения входных переменных J и K, получим словарь переходов JK‑триггера (табл. 13.5).

Таблица 13.5.

Словарь переходов JK-триггера

Используя словарь переходов JK‑триггера получаем карты Карно для функций входов J‑ и K‑триггеров в каждом разряде (рис. 13.13).

Рис. 13.13. Карты Карно для входов J и K триггеров

На основание карт Карно произведем минимизацию функции входов. В результате объединения клеток, показанных на рис. 13.13, получим простые выражения для функции входов

Рассмотрим более подробно минимизацию функции J4. Эта функция имеет восемь безразличных наборов, обозначенных «X» на рис. 13.13. Доопределим функцию таким образом, чтобы она имела значения J4=1 при ABCD=1111, выполним объединение клеток (рис. 13.13) и получим минимально дизъюктивную нормальную форму (МДНФ) в виде

J4=ABC.

В соответствие с полученными выражениями для функции входов построим декадный счетчик (рис. 13.14).

Рис. 13.14. Схема декадного счетчика

Из рис.13.14 видно, что схема декадного счетчика реализована на четырех триггерах и трех логических элементах И, два из которых имеют два входа и один имеет три входа. Счетчик, изображенный на рис. 13.14 является параллельным, т.к. все триггеры переключаются одновременно (синхронно).