Вступ
Зараз, в умовах багатократних інформаційних потоків, що зростають щороку, вже практично неможливо уявити чітку взаємодію банківських структур, торгових і посередницьких фірм, державних установ і інших організацій без сучасної обчислювальної техніки і комп'ютерних мереж. Інакше довелося б містити гігантський штат обробників паперових документів і кур'єрів, причому надійність і швидкість функціонування такої системи все одно була б модемним зв'язком, що значно нижче надавався, і комп'ютерними мережами. Адже кожна хвилина затримки в пересилці важливих інформаційних повідомлень може вилитися у вельми відчутні грошові втрати і іміджеві крахи.
Результатом еволюції комп'ютерних технологій з'явилися гетерогенні комп’ютерні мережі (ГКМ) на основі обчислювальних мереж. Обчислювальна мережа – це складний комплекс взаємозв'язаних і погоджено функціонуючих програмних і апаратних компонентів.
Комплекс апаратний – програмних засобів мережі може бути описаний багаторівневою моделлю.
У основі будь-якої мережі лежить апаратний шар, який включає комп'ютери різних класів. Набор комп'ютерів в мережі повинен відповідати набору різноманітних завдань, що вирішуються мережею.
Другий шар складає різноманітне мережеве устаткування, необхідне для створення локально-обчислювальних мереж, і комунікаційне устаткування для зв'язку з глобальними мережами. Комунікаційні пристрої грають не менш важливу роль, чим комп'ютери, які є основними елементами по обробці даних.
Третім шаром є операційні системи, які складають програмну основу мережі. При побудові мережевої структури важливо враховувати наскільки ефективно дана операційна система може взаємодіяти з іншими операційними системами мережі, наскільки вона здатна забезпечити безпеку і захист даних і так далі
Самим верхнім шаром мережевих засобів є різні мережеві застосування, такі як мережеві бази даних, поштові системи, засоби архівації даних і ін. Важливо знати сумісність різних мережевих застосувань.
В даний час використання ГКМ дає підприємству численні можливості. Кінцевою метою використання обчислювальних мереж на підприємстві є підвищення ефективності його роботи, яке може виражатися, наприклад, в збільшенні прибутку підприємства. Якщо ж розглядати питання впровадження ГКМ в роботу установ (з урахуванням появи нових можливостей у підприємства) більш глибоко, то з цього витікають ще декілька переваг.
Останнім часом почав переважати інший спонукальний мотив розгортання мереж, набагато важливіший, ніж економія засобів при розділенні дорогих ресурсів. Цим мотивом стало прагнення забезпечити користувачам мережі оперативний доступ до обширної корпоративної інформації.
Використання мережі приводить до вдосконалення комунікацій, тобто до поліпшення процесу обміну інформацією і взаємодії між співробітниками підприємства, а також його клієнтами і постачальниками. Мережі знижують потребу підприємств в інших формах передачі інформації, таких як телефон або звичайна пошта. Часто обчислювальні мережі на підприємстві розгортаються із-за можливості організації електронної пошти.
Безумовно, ГКМ мають і свої проблеми (складнощі з сумісністю програмного забезпечення, проблеми з транспортуванням повідомлень по каналах зв'язку з урахуванням забезпечення надійності і продуктивності), але головним доказом ефективності є безперечний факт їх повсюдного розповсюдження. Все більше і більше з'являються крупні мережі з сотнями робочих станцій і десятками серверів.
Виходячи з цього, тема даної роботи «Оптимальне управління діяльністю авіакопанії засобами гетерогенних комп’ютерних мереж» є актуальною.
Метою дипломного проектування є набуття практичних навиків в проектуванні обчислювальних мереж масштабу крупного підприємства, закріплення теоретичних знань по дисциплінах підготовки спеціальності «Комп'ютерні системи і мережі».
Виходячи з мети роботи, завданнями дослідження є:
1. Розподіл всіх апаратних засобів ГКМ авіакомпанії, у тому числі і у філіях, по відділах.
2. Вибір і обґрунтування операційної системи, використовувану в ГКМ, мережевої операційної системи, СУБД, бухгалтерських програм, програмного забезпечення управління авіакомпанії і так далі.
3. Визначення числа і типів серверів, використовуваних в авіакомпанії, а також місць їх розташування.
4. Вибір і обґрунтування типів каналів зв'язку між корпусами, між центральним офісом і філіями авіакомпанії.
5. Вибір активного комунікаційного устаткування для проектування мережі і визначення місця їх розташування.
6. Розробка структурної схеми обчислювальної мережі ГКМ авіакомпанії (всі відділи, розміщення хостов, лінії зв'язку між ними, розташування серверів і так далі).
1. Аналіз технологій гетерогенних комп’ютерних мереж
1.1 Технології комп’ютерних мереж масштабу підприємства
Обчислювальні мережі набули поширення при появі міні-комп'ютерів, порівняно низька вартість яких дозволила багатьом підприємствам і організаціям встановлювати в одній будівлі декілька таких комп'ютерів. Локальні обчислювальні мережі об'єднують комп'ютери однієї будівлі або декілька будівель в єдину мережу, при цьому технології локальних мереж забезпечують економічне з'єднання комп'ютерів за рахунок використання стандартних топологій і якісних кабельних систем. В результаті селекції, проведеною практикою, в арсеналі розробника залишилося декілька базових технологій, на основі яких працюють переважна більшість локальних сучасних мереж: Fast Ethernet і FDDI.
1.1.1 Технологія Fast Ethernet
Fast Ethernet використовує метод передачі даних CSMACD-доступ до середовища з контролем тієї, що несе і виявленням колізій. Fast Ethernet використовує розмір пакету 15160 байт. Крім того, Fast Ethernet накладає обмеження на відстань між пристроями, що підключаються, – не більше 100 метрів. Для того, щоб понизити перевантаження, мережі стандарту Fast Ethernet розбиваються на сегменти, які об'єднуються за допомогою мостів і маршрутизаторів. Сьогодні при побудові центральної магістралі, об'єднуючої сервери, використовують комутовані Fast Ethernet. Fast Ethernet-комутатори можна розглядати як високошвидкісні багато портові мости, які в стані самостійного визначити, в який з його портів адресований пакет. Комутатор проглядає заголовки пакетів і таким чином складає таблицю, що визначає, де знаходиться той або інший абонент з такою фізичною адресою. Це дозволяє обмежити область розповсюдження пакету і понизити вірогідність переповнювання, посилаючи його тільки в потрібний порт. Тільки широкомовні пакети розсилаються по всіх портах. Офіційний стандарт 803.u встановив три різні специфікації для фізичного рівня Fast Ethernet.
100BASE-TX – для двохпарного кабелю на неекранованій витій парі UTP категорії 5 або екранованій витій парі STP Type1;
Стандарт 100BaseTX вимагає застосування двох пар UTP або STP. Одна пара служить для передачі, інша – для прийому. Цим вимогам відповідають два основні кабельні стандарти: EIA/TIA-568 UTP Категорії 5 і STP Типу 1 компанії IBM. У 100BaseTX привабливе забезпечення повнодуплексного режиму при роботі з мережевими серверами, а також використання всього два з чотирьох пар восьмижильного кабелю – дві інші пари залишаються вільними і можуть бути використані надалі для розширення можливостей мережі.
Недоліки: цей кабель дорожчий за інші восьмижильні кабелі, крім того, для роботи з ним потрібне використання пробійних, роз'ємів і комутаційних панелей, що задовольняють вимогам Категорії 5. Потрібно додати, що для підтримки повнодуплексного режиму слід встановити повнодуплексні комутатори.
100Base-T4 – для чотирипарного кабелю на неекранованій витій парі UTP категорії 3, 4 або 5;
100BASE-T4 є розширенням стандарту 10Base-T з пропускною спроможністю від 10 М бит/с до 100 Мбіт/с. Стандарт 100Base-T включає протокол обробки множинного доступу з пізнанням тієї, що несе і виявленням конфліктів CSMA/CD. У 100Base-T4 використовуються всі чотири пари восьмижильного кабелю: одна для передачі, інша для прийому, а що залишилися дві працюють як на передачу, так і на прийом. Таким чином, в 100Base-T4 і прийом, і передача даних можуть здійснюватися по трьом парам. Розкладаючи 100 Мбіт/с на три пари. 100Base-T4 зменшує частоту сигналу, тому для його передачі досить і менш високоякісного кабелю. Для реалізації мереж 100Base-T4 підійдуть кабелі UTP Категорій 3 і 5, так само як і UTP Категорії 5 і STP Типу 1.В 10Base-T відстань між концентратором і робочою станцією не повинна перевищувати 100 метров. Оскільки сполучні пристрої (повторители) вносять додаткові затримки, реальна робоча відстань між вузлами може опинитися ще менше.
Недоліки ж полягають в тому, що для 100Base-T4 потрібно всі чотири пари і що повнодуплексний режим цим протоколом не підтримується.
100BASE-FX – для багатомодового оптоволоконного кабелю, використовуються два волокна.
Fast Ethernet включає також стандарт для роботи з багатомодовим оптоволокном з 62.5-мікронним ядром і 125-мікронною оболонкою. Стандарт 100BaseFX орієнтований в основному на магістралі – на з'єднання повторителей Fast Ethernet в межах однієї будівлі. Традиційні переваги оптичного кабелю властиві і стандарту 100BaseFX: стійкість до електромагнітних шумів, покращуваний захист даних і великі відстані між мережевими пристроями.
1.1.2 Gigabit Ethernet
Унаслідок зростання інформаційних потоків виникла потреба в збільшенні швидкості передачі стандарту Ethernet. Була запропонована специфікація Gigabit Ethernet, прийнята до розробки комітетом IEEE 802.3. У травні 1996 року декілька крупних виробників мережевого устаткування, таких як 3Com, Cisco, Bay Networks, Compaq і Intel, організували Gigabit Ethernet Alliance. Спочатку до складу Альянсу увійшло 11 компаній. На початок 1998 року Альянс включав вже більше 100 компаній.
Gigabit Ethernet використовує той же протокол передачі CSMA/CD, що і його попередники Ethernet і Fast Ethernet. Цей протокол визначає максимальну довжину сегменту. Мінімальний розмір кадру CSMA/CD в специфікації 802.3 дорівнює 64 байтам. Саме мінімальний розмір кадру визначає максимальна відстань між станціями. Ця відстань також називається діаметром колізійного домена. Час передачі такого кадру дорівнює 51,2 мкс або 512 ВТ (bit time – час, необхідний для передачі одного біта). Тому час, за який сигнал досягає видаленого вузла і повертається назад, не повинен перевищувати 512 ВТ. Цей час визначає максимальну довжину мережі Ethernet.