МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
"Гомельский государственный университет имени Франциска Скорины"
математический факультет
кафедра ВМиП
Курсовая работа
"Оптимальное распределение неоднородных ресурсов"
Гомель 2006
Содержание
Введение. 3
Постановка задач. 5
Выявление основных особенностей, взаимосвязей и количественных закономерностей 6
Решение задачи традиционными методами. 8
Решение задачи с использованием системы Mathcad. 12
Заключение. 18
Литература. 19
В данной курсовой работе изложен метод решения задач об оптимальном распределении неоднородных ресурсов с помощью системы символьной математики Mathcad.
Как известно в настоящее время широко используются следующие системы символьной математики: Maple, Matlab, Mathematica, Reduce, Derive, Theorist, Macsyma. Почему же наш выбор пал на Mathcad? На это есть несколько причин:
1) Reduce, Derive, Theorist, Macsyma были созданы для совершенно других задач. Их основное назначение это доказательство теорем алгебры (Reduce, Macsyma). Derive, Theorist морально устарели еще 5 лет назад. Matlab ориентирован на работу с матрицами. Остаются только Maple, Mathematica и Mathcad.
2) Из этих программ только Mathematica и Mathcad обладают современными средствами визуализации представления данных. И запись в системе Mathcad наиболее приближена к записи математических задач без применения компьютера.
3) Mathcad изначально создавался для численного решения математических задач. С развитем Mathcad впитал в себя только лучшее от Maple (ядро для символьных вычислений) и Matlab (библиотеку высокоскоростных алгоритмов NAG).
4) Mathcad более доступен для массового пользователя.
В первом пункте курсовой приведены примеры типичных задач соответствующей тематики. Во втором пункте построена математическая модель данных задач. В третьем пункте приведен алгоритм симплекс-метода. Главное, что нам из него необходимо, это умение находить начальное приближение, остальное доделает Mathcad. В четвертом пункте приведен порядок действий для решения задач линейного программирования в системе Mathcad и приведены ряд примеров решения задач с использованием Mathcad. Так же приведены случаи, когда иследуемая целевая функция на заданном множестве ограничений не имеет экстремумов, или когда имеет более одного экстремума. В последнем случае предложена трактовка данного результата.
В процессе производства постоянно возникают задачи определения оптимального плана производства продукции при наличии определенных ресурсов (сырья, полуфабрикатов, оборудования, финансов, рабочей силы и др.) или проблемы оптимизации распределения неоднородных ресурсов на производстве. Рассмотрим несколько возможных постановок таких задач.
Постановка задачи А. Для изготовления
Данные для задачи A
Используемые ресурсы | Изготавливаемые изделия | Наличие ресурсов | |||
| | | | ||
Трудовые | 3 | 5 | 2 | 7 | 15 |
Материальные | 4 | 3 | 3 | 5 | 9 |
Финансовые | 5 | 6 | 4 | 8 | 30 |
Прибыль | 40 | 50 | 30 | 20 |
Постановка задачи В. Пусть в распоряжении завода железобетонных изделий (ЖБИ) имеется
Данные для задачи B
Используемые ресурсы | Изготавливаемые изделия | Наличие ресурсов | |||
| | | | ||
Песок | 3 | 5 | 2 | 7 | 15 |
Щебень | 4 | 3 | 3 | 5 | 9 |
Цемент | 5 | 6 | 4 | 8 | 30 |
Прибыль | 40 | 50 | 30 | 20 |
Постановка задачи С. Пусть на предприятии после модернизации производства появился свободный ресурс времени. Предлагается организовать производство новых изделий нескольких наименований. Известно время, требуемое на изготовление отдельного изделия на каждом оборудовании, свободные резервы времени на каждой машине, а также прибыль, получаемая от выпуска каждого изделия. Требуется определить, какие изделия, и в каком количестве целесообразно производить на предприятии, чтобы получить максимальную прибыль.
Количество изделий
Полученную систему можно представить в виде совокупности равенств, если в каждое из неравенств ввести фиктивные изделия (дополнительные переменные)
В этом случае система равенств примет такой вид:
Это преобразование необходимо для упрощения вычислительной процедуры в дальнейшем. Прибыль, получаемая от фиктивных изделий, принимается равной нулю.
Построение математической модели. Критерий оптимизации (суммарную величину прибыли) можно тогда представить так: