Смекни!
smekni.com

Организация баз данных (стр. 4 из 39)

В IMS использовалась оригинальная и нестандартная терминология: "сегмент" вместо "запись", а под "записью БД" понималось все дерево сегментов.

2.3.2 Манипулирование данными

Примерами типичных операторов манипулирования иерархически организованными данными могут быть следующие:

1. Найти указанное дерево БД (например, отдел 310);

2. Перейти от одного дерева к другому;

3. Перейти от одной записи к другой внутри дерева (например, от отдела - к первому сотруднику);

4. Перейти от одной записи к другой в порядке обхода иерархии;

5. Вставить новую запись в указанную позицию;

6. Удалить текущую запись.

2.3.3 Ограничения целостности

Автоматически поддерживается целостность ссылок между предками и потомками. Основное правило: никакой потомок не может существовать без своего родителя. Заметим, что аналогичное поддержание целостности по ссылкам между записями, не входящими в одну иерархию, не поддерживается (примером такой "внешней" ссылки может быть содержимое поля Каф_Номер в экземпляре типа записи Куратор).

В иерархических системах поддерживалась некоторая форма представлений БД на основе ограничения иерархии. Примером представления приведенной выше БД может быть иерархия, изображенная на рис. 2.3.

рис. 2.3 Пример представления иерархической БД.

2.4 Сетевая модель

Типичным представителем является Integrated Database Management System (IDMS) компании Cullinet Software, Inc., предназначенная для использования на машинах основного класса фирмы IBM под управлением большинства операционных систем. Архитектура системы основана на предложениях Data Base Task Group (DBTG) Комитета по языкам программирования Conference on Data Systems Languages (CODASYL), организации, ответственной за определение языка программирования Кобол. Отчет DBTG был опубликован в 1971г., а в 70-х годах появилось несколько систем, среди которых IDMS.

2.4.1 Сетевые структуры данных

Сетевой подход к организации данных является расширением иерархического. В иерархических структурах запись-потомок должна иметь в точности одного предка; в сетевой структуре данных потомок может иметь любое число предков.

Сетевая БД состоит из набора экземпляров каждого типа записи и набора экземпляров каждого типа связи (рис. 2.4).

Тип связи определяется для двух типов записи: предка и потомка. Экземпляр типа связи состоит из одного экземпляра типа записи предка и упорядоченного набора экземпляров типа записи потомка. Для данного типа связи L с типом записи предка P и типом записи потомка C должны выполняться следующие два условия:

1. Каждый экземпляр типа P является предком только в одном экземпляре L;

2. Каждый экземпляр C является потомком не более, чем в одном экземпляре L.

На формирование типов связи не накладываются особые ограничения; возможны, например, следующие ситуации:

1. Тип записи потомка в одном типе связи L1 может быть типом записи предка в другом типе связи L2 (как в иерархии).

2. Данный тип записи P может быть типом записи предка в любом числе типов связи.

3. Данный тип записи P может быть типом записи потомка в любом числе типов связи.

4. Может существовать любое число типов связи с одним и тем же типом записи предка и одним и тем же типом записи потомка; и если L1 и L2 – два типа связи с одним и тем же типом записи предка P и одним и тем же типом записи потомка C, то правила, по которым образуется родство, в разных связях могут различаться.

5. Типы записи X и Y могут быть предком и потомком в одной связи и потомком и предком – в другой.

6. Предок и потомок могут быть одного типа записи.

рис. 2.4 Простой пример сетевой схемы БД.

2.4.2 Манипулирование данными

Примерный набор операций может быть следующим:

1. Найти конкретную запись в наборе однотипных записей (инженера Сидорова);

2. Перейти от предка к первому потомку по некоторой связи (к первому сотруднику отдела 310);

3. Перейти к следующему потомку в некоторой связи (от Сидорова к Иванову);

4. Перейти от потомка к предку по некоторой связи (найти отдел Сидорова);

5. Создать новую запись;

6. Уничтожить запись;

7. Модифицировать запись;

8. Включить в связь;

9. Исключить из связи;

10. Переставить в другую связь и т.д.

2.4.3 Ограничения целостности

В принципе их поддержание не требуется, но иногда требуется целостности по ссылкам (как в иерархической модели).

2.5 Основные достоинства и недостатки ранних СУБД

Сильные места ранних СУБД:

1. Развитые средства управления данными во внешней памяти на низком уровне;

2. Возможность построения вручную эффективных прикладных систем;

3. Возможность экономии памяти за счет разделения подобъектов (в сетевых системах).

Недостатки:

1. Слишком сложно пользоваться;

2. Фактически необходимы знания о физической организации;

3. Прикладные системы зависят от этой организации;

4. Их логика перегружена деталями организации доступа к БД.

Литература:

1. Сергей Кузнецов, “Основы современных баз данных”. Центр Информационных Технологий, http://www.citforum.ru/database/osbd/contents.shtml

ЛЕКЦИЯ 3. Реляционная модель и ее характеристики. Целостность в реляционной модели

3.1 Представление информации в реляционных БД

3.2 Домены

3.3 Отношения. Свойства и виды отношений

3.4 Целостность реляционных данных

3.5 Потенциальные и первичные ключи

3.6 Внешние ключи

3.7 Ссылочная целостность

3.8 Значения NULL и поддержка ссылочной целостности

3.1 Представление информации в реляционных БД

Реляционный подход является наиболее распространенным в настоящее время, хотя наряду с общепризнанными достоинствами обладает и рядом недостатков. К числу достоинств реляционного подхода можно отнести:

1. наличие небольшого набора абстракций, которые позволяют сравнительно просто моделировать большую часть распространенных предметных областей и допускают точные формальные определения, оставаясь интуитивно понятными;

2. наличие простого и в то же время мощного математического аппарата, опирающегося главным образом на теорию множеств и математическую логику и обеспечивающего теоретический базис реляционного подхода к организации баз данных;

3. возможность ненавигационного манипулирования данными без необходимости знания конкретной физической организации баз данных во внешней памяти.

Однако реляционные системы далеко не сразу получили широкое распространение. В то время, как основные теоретические результаты в этой области были получены еще в 70-х, и тогда же появились первые прототипы реляционных СУБД, долгое время считалось невозможным добиться эффективной реализации таких систем. Однако отмеченные выше преимущества и постепенное накопление методов и алгоритмов организации реляционных баз данных и управления ими привели к тому, что уже в середине 80-х годов реляционные системы практически вытеснили с мирового рынка ранние СУБД.

В настоящее время основным предметом критики реляционных СУБД является не их недостаточная эффективность, а следующие недостатки:

1. присущая этим системам некоторая ограниченность (прямое следствие простоты) при использовании в так называемых нетрадиционных областях (наиболее распространенными примерами являются системы автоматизации проектирования), в которых требуются предельно сложные структуры данных.

2. невозможность адекватного отражения семантики предметной области. Другими словами, возможности представления знаний о семантической специфике предметной области в реляционных системах очень ограничены. Современные исследования в области постреляционных систем главным образом посвящены именно устранению этих недостатков.

В реляционной модели рассматриваются три аспекта данных:

1. структура данных (объекты данных);

2. целостность данных;

3. обработка данных (операторы).

Рассмотрим специальную терминологию, применяемую в рамках аспекта "структура данных" (рис. 3.1).

рис. 3.1 Отношение.

3.2 Домены

Домен является наименьшей семантической единицей данных, которая предполагается отдельным значением данных (таким как номер студента, фамилия студента и т.д.). Такие значения называют скалярами. Скалярные значения представляют собой наименьшую семантическую единицу данных в том смысле, что они являются атомарными: в реляционной модели у них отсутствует внутренняя структура. Следует обратить внимание, что отсутствие внутренней структуры при рассмотрении в реляционной модели вовсе не значит, что внутренняя структура отсутствует вообще. Например, название города имеет внутреннюю структуру (оно состоит из последовательности букв) однако, разложив название по буквам мы потеряем значение. Значение станет понятным лишь в том случае, если буквы сложены вместе и в правильной последовательности.

Таким образом, домен – именованное множество скалярных значений одного типа. Например, домен городов это множество всех возможных названий городов. Домены являются общими совокупностями значений из которых берутся реальные значения атрибутов.

Следует обратить внимание, что обычно в любой момент времени в домене будут значения, не являющиеся значением ни одного из атрибутов, соответствующих этому домену.

Основное значение доменов в том, что домены ограничивают сравнения. Сравнение будет иметь смысл для атрибутов, основанных на одном и том же домене. Например, можно сравнивать числовой код студента и оценку, полученную студентом на экзамене - и то и другое - целые числа, однако такое сравнение будет лишено смысла.