Смекни!
smekni.com

Организация баз данных (стр. 5 из 39)

Домены, прежде всего, имеют концептуальную природу. Они могут быть или не быть явно сохранены в базе данных как реальные наборы значений (фактически, в большинстве случаев они не сохраняются), но они должны быть, по крайней мере, определены в рамках определений базы данных. Тогда каждое определение атрибута должно включать ссылку на соответствующий домен, таким образом, системе будет известно, какие атрибуты можно сравнивать, а какие - нет.

3.3 Отношения. Свойства и виды отношений

Вокруг понятия "отношение" сложилась некоторая двусмысленность из-за отсутствия четкого разграничения между переменными отношений и значениями отношений. Переменная отношения – это обычная переменная, такая же, как и в языках программирования, т.е. именованный объект, значение которого может изменяться со временем. А значение этой переменной в любой момент будет значением отношения.

Отношение R, определенное на множестве доменов D1, D2, …, Dn (не обязательно различных), содержит две части – заголовок и тело:

1. заголовок содержит фиксированное множество атрибутов или, точнее, пар <имя‑атрибута : имя‑домена>:

2. {<A1:D1>, <A2:D2>, …, <An:Dn>},
причем каждый атрибут Aj соответствует одному и только одному из лежащих в основе доменов Dj (j=1,2, …, n). Все имена атрибутов A1, A2, …, An разные.

3. Тело состоит из множества кортежей. Каждый кортеж, в свою очередь содержит множество пар <имя‑атрибута : значение‑атрибута>:
{<A1:Vi1>, <A2:Vi2>, …, <An:Vin>},
(i=1, 2, …, m, где m - количество кортежей в этом множестве). В каждом таком кортеже есть одна такая пара <имя‑атрибута : значение‑атрибута>, т.е. <Aj:Vij>, для каждого атрибута Aj в заголовке. Для любой такой пары <Aj:Vij> Vij является значением из уникального домена Dj, который связан с атрибутом Aj.

Значения m и n называются соответственно кардинальным числом и степенью отношения R.

3.3.1 Свойства отношений

1. В отношении отсутствуют одинаковые кортежи.

Это свойство следует из того факта - что тело отношения – это математическое множество (кортежей), а множества в математике по-определению не содержат одинаковых элементов. Это свойство служит иллюстрацией различия между отношением и таблицей т.к. таблица, в общем случае может содержать одинаковые строки.

Важным следствием того, что не существует одинаковых строк является то, что всегда существует первичный ключ. Так как кортежи уникальны, по крайней мере комбинация всех кортежей будет обладать свойством уникальности, а значит, при необходимости, может служить первичным ключом.

2. Кортежи не упорядочены сверху вниз.

Это свойство также следует из того, что тело отношения – это математическое множество, а простые множества в математике не упорядочены. Второе свойство также служит иллюстрацией того факта, что отношение и таблица – не одно и тоже так как строки таблицы упорядочены сверху вниз, в то время, как кортежи отношения – нет.

3. атрибуты не упорядочены слева на право.

И это свойство следует из того, что заголовок отношения определен как множество атрибутов. Аналогично второму свойству, можно заметить отличия между таблицей и отношением – в таблице столбцы упорядочены слева на право.

4. все значения атрибутов атомарные.

Это свойство является следствием того, что все лежащие в основе домены содержат только атомарные значения. Отношение, удовлетворяющее этому условию, называется нормализованным, или представленном в первой нормальной форме. Это означает, что с точки зрения реляционной модели все отношения нормализованы.

3.3.2 Виды отношений

Определим некоторые виды отношений, встречающиеся в реляционных системах.

1. Именованное отношение – это переменная отношения, определенная в СУБД посредством операторов создания отношений.

2. Базовым отношением называется именованное отношение, которое не является производным (т.е. базовое отношения является автономным).

3. Производным отношением называется отношение, определенное (посредством реляционного выражения) через другие именованные выражения и, в конечном счете, через базовые отношения.

4. Выражаемое отношение – отношение, которое можно получить из набора именованных отношений посредством некоторого реляционного выражения. Множество всех выражаемых отношений – это в точности множество всех базовых отношений и всех производных отношений.

5. Представление – это именованное производное отношение. Представления, как и базовые отношения являются переменными отношений. Представления виртуальны – они представлены в системе исключительно через определение в терминах других именованных отношений.

6. Снимки – это именованные производные отношения, в отличии от представлений являются реальными и представлены в системе не только в виде определений в терминах других именованных отношений, но и своими данными.

7. Результатом запроса называется неименованное производное отношение, служащее результатом некоторого определенного запроса.

8. Промежуточным результатом называется неименованное производное отношение, являющееся результатом некоторого реляционного выражения, вложенного в другое, большее выражение.

9. Хранимое отношение – отношение, которое поддерживается непосредственно в физической памяти.

Каждое отношение в реляционной модели имеет некоторую интерпретацию, причем пользователи должны ее знать для эффективного использования БД.

Например: студент с номером SNo имеет фамилию SurName и проживает в городе City. При этом нет двух студентов с одинаковыми номерами.

Формально, подобное утверждение называют предикатом, или функцией значения истинности. В последнем примере – функцией трех аргументов. Подстановка значений этих аргументов эквивалентна вызову функции и приводит к получению выражения, называемого высказыванием, которое может быть либо истинным либо ложным.

Предикат данного отношения составляет критерий возможности обновления для этого отношения. Для того, чтобы система могла определить допустимость обновления данного отношения, ей должен быть известен предикат этого отношения. СУБД, чтобы определить допустимость обновления отношения использует определенные для данного отношения правила целостности.

3.4 Целостность реляционных данных

Большинство БД подчиняются множеству правил целостности. В любой момент времени любая база данных содержит некую определенную конфигурацию значений данных, и предполагается, что эта конфигурация отображает действительность – т.е. является моделью части реального мира. Просто определенная конфигурация значений не имеет смысла, если значения в этой конфигурации не представляют определенного состояния реального мира. Исходя из сказанного выше, определение базы данных нуждается в расширении, включающем правила целостности, назначение которых в том, чтобы информировать СУБД о разного рода ограничениях реального мира. В реляционной модели есть два общих особых правил целостности. Эти правила относятся к потенциальным (и первичным) ключам и ко внешним ключам.

3.5 Потенциальные и первичные ключи

Пусть R – некоторое отношение. Тогда потенциальный ключ, скажем, K для R – это подмножество множества атрибутов R, обладающее следующими свойствами:

1. Свойство уникальности – нет двух разных кортежей в отношении R с одинаковым значением K.

2. Свойство не избыточности – никакое из подмножеств K не обладает свойством уникальности.

Следует обратить внимание, что данное выше определение потенциального ключа относится к самому отношению (т.е. к значениям отношения), а не к переменным отношения.

При рассмотрении потенциальных ключей необходимо заметить следующее:

1. На практике большинство отношений имеют только один потенциальный ключ, хотя в общем случае их может быть несколько.

2. Потенциальные ключи определены как множества атрибутов. Потенциальный ключ, состоящий из нескольких атрибутов называется составным, состоящий из одного атрибута – простым.

3. Понятие не избыточности. Если определить "потенциальный ключ" не являющийся не избыточным, системе не будет известно об этом и она не сможет обеспечить должным образом соответствующее ограничение целостности. Например: в отношении с данными о студентах можно определить избыточный потенциальный ключ, состоящий из уникального кода студента StNo и названия города, в котором он проживает City. В таком случае система не сможет соблюдать ограничение, обеспечивающее уникальность номера студента в глобальном смысле, вместо этого будет выполняться более слабое ограничение, обеспечивающее уникальность номера студента в пределах города.

Причина важности потенциальных ключей заключается в том, что они обеспечивают основной механизм адресации на уровне кортежей в реляционной системе. Единственный способ точно указать на какой-либо кортеж – это указать точное значение потенциального ключа.

Отношение может иметь более одного потенциального ключа. В этом случае в реляционной модели, один из них выбирается в качестве первичного в базовом отношении, а остальные потенциальные ключи, если они есть будут называться альтернативными ключами.

Если множество потенциальных ключей содержит более одного элемента, выбор первичного ключа, в общем случае, осуществляется произвольно.

3.6 Внешние ключи

Пусть R2 – базовое отношение. Тогда внешний ключ – FK в отношении R2 – это подмножество множества атрибутов R2 такое, что:

1. существует базовое отношение R1 (R1 и R2 не обязательно различны) с потенциальным ключом CK.