Смекни!
smekni.com

Моделювання поведінки клієнта страхової компанії (стр. 7 из 8)

Табл. 7. Взаємодія страхової фірми та клієнта
Умови Клієнт Страхова компанія
умови страхування вигідні для того, щоб клієнт страхував актив повністю збиткова
умови страхування вигідні для того, щоб клієнт страхував актив частково збиткова
умови страхування вигідні для того, щоб клієнт страхував актив частково прибуткова (в середньому)
умови страхування не вигідні для клієнта прибуткова (в середньому)

Отже, клієнт страхової компанії зацікавлений в її процвітанні, й навпаки, страхова компанія не може нормально працювати, не створивши вигідні умови для клієнтів.

Окремий випадок

Табл.7 свідчить про важливість урахування страховою компанією сили цінностей клієнтта й зокрема, загрозливої межі

для параметра
, після чого клієнт вже не звертається до страхової компанії.

Досить часто оправданою є така гіпотеза:

Корисність першої одиниці активу надзвичайно велика, а останньої - досить мала;

З гіпотези випливає, що загрозлива межа

відсувається дуже далеко, й достатньою умовою прибутковості страхової фірми буде виконання лише нерівності:

або

. (28)

У підручниках і задачниках з мікроекономіки вживаною є функція корисності

.

Очевидно, що гранична корисність першої одиниці активу, згідно з цією функцією становитиме величину:

.

Звідси, для страхової компанії, яка обслуговує клієнтів із системою цінностей, що відображається функцією корисності

, єдиною умовою прибутковості є нерівність (28).

Проте прибутковість буває теж різною, й звісно, компанія прагне до максимального прибутку (сподіваного). Тому надмірна жадібність може призвести до невеликих прибутків.

Ускладнені варіанти розрахунків

Проведений вище аналіз базувався на істотних спрощеннях, зокрема на припущенні, що всі клієнти однакові. Зберігаючи основну схему розрахунків, її можна розповсюдити на більш загальний випадок, зокрема на той, коли є кілька груп клієнтів із різним ставленням до ризику.

Позначимо через g групу клієнтів, через

- множину груп,
- кількість осіб, які належать до групи
- відповідно функцію корисності та актив особи групи.

Модель індивіда, який звертається за послугами до страхової компанії, залишається незмінною, за винятком того, запроваджується додатковий індекс належності до груп.

(29)

Позначимо через

вважатимемо, що розв'язок задачі (29). Будемо вважати його єдиним. Також вважатимемо, що страхова подія трапляється для усіх осіб однієї групи разом.

розрахунків

Завдання страхової компанії полягає у виборі параметрів страхування

та q таким чином, щоб максимізувати сподівану корисність її прибутку, тобто:

де

- індикатор страхової події для осіб групи
,

U – функція корисності страхової компанії.

Припущення щодо нейтральності до ризику страхової компанії істотно спрощує ви­раз сподіваної корисності її прибутку:

де Pg - імовірність страхового випадку для групи

.

Розрахунки сподіваного прибутку страхової компанії в цьому випадку вимагають знаходження оптимальної реакції на параметри страхування осіб з усіх груп.


ВИСНОВОК

I. Економікa страхування базується на купівлі та продажу ризику. На відміну від звичайних товарів, ризик - антитовар. Позбавлення від нього особи приводить до покращення її життєвих кондицій. За це продавець ризику сплачує покупцеві ризику.

II. Покупцем ризику є страхова компанія, продавцем – її клієнт.

III. Клієнт страхової компанії – особа, несхильна до ризику. Для неї більш привабливим є отримання дещо меншої, але гарантованої суми, аніж участь у ризикованій операції з більшим сподіваним результатом. Тому потенційний клієнт схильний до того, щоб позбутись частки активу, яким він володіє, але гарантовано зберегти залишок активу.

IV. Особа, нeсхильна до ризику, має увігнуту функцію корисності за Нейманом-Моргенштерном. Найбільш вагомою вона вважає втрату останніх одиниць активу. Втрата перших одиниць - менш вагома.

V. Загальна схема страхування полягає в купівлі клієнтом страхової компанії страхового потоку, який гарантує повне відшкодування частки активу, яка страхується. Вартість полісу пропорційна обсягу страхованого активу й називається страховим платежем. Вартість страхування одиниці активу – питомим страховим платежем. У разі втрати активу, тобто, копи трапляється страховий випадок, страхова компанія повністю відшкодовує клієнтові страховану частку активу, а також страховий внесок.

VI. Модель клієнта страхової компанії має такий вигляд:

Згідно з цією моделлю, клієнт поводиться так, начебто він максимізує сподівану корисність залишку активу.

VII. Оскільки функція корисності

увігнута, то функція сподіваної корисності
буде також увігнутою. Іншими словами, для особи, несхильної до ризику, виконується закон спадаючої граничної сподіваної корисності.

VIII. Увігнутість функції сподіваної корисності дає змогу давати достатні умови випадкам, коли

а) клієнт ухиляється від страхування взагалі,

б) клієнт страхує весь актив повністю;

в) клієнт страхує частку активу.

Якщо перша одиниця страхованого активу мала від'ємну граничну сподівану корисність, то клієнт ухиляється від страхування взагалі, тобто

Аналогічно, якщо остання одиниця страхованою активу має додатну сподівану граничну корисність, то клієнт страхує актив повністю:

Якщо перша одиниця страхованого активу має додатну граничну сподівану коpиcнicть, а остання - від’ємну, то клієнт страхує актив частково, тобто

IX. Оскільки

то остання умова дає рівняння рівноваги:

(30)

X. Величина

є граничною корисністю страхування у разі страхового випадку,
- граничною шкодою за його відсутності. Отже, згідно з рівнянням рівноваги, клієнт у разі пошуку найпривабливішого обсягу страхування балансує граничну корисність та шкоду від страхування з урахуванням імовірності страхового випадку.

XI. Прибуток страхової компанії - це різниця між страховими внесками та винагородами клієнтів. Звідси, прибуток страхової компанії є випадковою величиною, оскільки кожен клієнт може як збільшувати, так і зменшувати прибуток страхової компанії залежно від того, чи трапився страховий випадок.

XII. Позначимо через s індекс клієнта страхової компанії. Кількість клієнтів позначимо через

. Тоді прибуток страхової компанії становитиме величину:

,

де xs(r,q) обсяг страхування з боку клієнта s за питомого страхового внеску та питомої страхової винагороди q.

Іs - індекс страхового випадку, клієнта s, що дорівнює 1, якщо має місце страховий випадок для клієнта s, і 0 у протилежному випадку.