Смекни!
smekni.com

Моделювання поведінки клієнта страхової компанії (стр. 1 из 8)

Міністерство освіти і науки України

Львівський національний університет ім. І.Франка

КУРСОВА РОБОТА

Моделювання поведінки клієнта страхової компанії

ПЛАН

ВСТУП

І. КУПІВЛЯ ТА ПРОДАЖ РИЗИКУ. ВСТУП ДО ТЕОРІЇ СТРАХУВАННЯ ТА ГРАЛЬНОГО БІЗНЕСУ

1. Тест журналу FORTUNE

2. Атом ризику, або лотерея за Нейманом-Моргенштерном.

3. Ставлення до ризику: схильність, несхильність та нейтральність до ризику.

4. Закон спадаючої корисності та ризик

5. Прибуток страхової компанії

6. Принцип об’єднання ризику та акції

7. Селекція за ступенем імовірності втрат

8. Схильність до ризику та гральний бізнес

ІІ. ТАБЛИЧНА МОДЕЛЬ ПОВЕДІНКИ КЛІЄНТА СТРАХОВОЇ КОМПАНІЇ

1. Реакція клієнта на зміну параметрів страхування

ІІІ. АНАЛІЗ РІВНОВАГИ ОСОБИ, ЯКА СТРАХУЄТЬСЯ

1. Математична модель клієнта

2. Теорема про рівновагу

3. Аналіз рівноваги

ІV. АНАЛІЗ ТАКТИКИ СТРАХОВОЇ КОМПАНІЇ

1. Прибуток страхової компанії та його корисність

2. Модель страхової компанії

3. Нейтральність до ризику страхової компанії

4. Розрахунок реакції клієнта страхової компанії

5. Оптимальна ціна страхування

6. Умови прибутковості страхової компанії

7. Параметричний аналіз взаємодії страхової компанії та її клієнта

ВИСНОВОК

ВСТУП

Купівля та продаж ризику. Вступ до теорії страхування та грального бізнесу.

Що стоїть за „одноруким” бандитом ?

Згідно із законами штату Невада, 13 % від прибутків грального бізнесу надходить до бюджету штату. Але щоб сплатити певні відрахування від прибутку, потрібно його мати. Та всі капітани грального бізнесу повинні на щось жити. Словом, бізнес є бізнес, і кожен товар, кожен вид устаткування мусить давати прибуток. Це стосується і гральних автоматів, які за можливість відчути азарт гри стягують данину з гравців. Спробуємо з боку стороннього спостерігача поміркувати, що міститься в середині „однорукого бандита”.

Очевидно, що осердям гральних автоматів є глибоко продумана фахівцями найвищого класу програма тактики гри. Якщо фірма-виробник не дбає про це, то її автомати не знайдуть збуту на ринку. Це – перше.

Друге. Чи можна було б висловити певні міркування щодо принципів побудови програми? Користуючись законами ринкової економіки (а не емоціями гравця та даними промислового шпигунства), на нашу гадку, це можна зробити. Насамперед, дії автомата мають бути рандомізованими, тобто створювати ілюзію випадковості, ілюзію гри та азарту. Без цього автомат буде перетворений на церковну карнавку для пожертвувань (і до нього ніхто не підійде, бо хто хоче пожертвувати, знайде краще місце де це можна зробити) або перетвориться в пункт неконтрольованої допомоги невідомо кому. В другому випадку власник автомата відразу ж законсервує його, чим створить антирекламу фірмі – виробнику автоматів.

Знову ж, користуючись законами ризику, можна деталізувати наші уявлення про „мозок” нашого героя – грального автомата. Очевидно, що закони ринку не дають змоги автоматові вести „чесну гру”, тобто гру, за якою середній виграш та програш гравців збігались би. Коли б автомат був запрограмованим саме на таку гру, то гральний бізнес просто не існував би, тому що потрібно відшкодовувати витрати на сам автомат, сплачувати платню обслуговуючому персоналу, оренду за місце, податки. Що ж, прибуток, так прибуток. Запрограмуємо автомат на максимальну жадібність, тоді виникає інша небезпека – люди не користуватимуться послугами гральних машин, оскільки ці машини вже не будуть такими. Потрібна золота середина.

Один з висновків цієї історії – ризиком потрібно керувати.

Тест журналу FORTUNE

Чому одні люди уникають ризику і ладні сплачувати гроші за зменшення ступеня ризику, а інші, навпаки, прагнуть до ризику і схильні сплачувати гроші вже за ризик? Більш того, одна й та сама людина, маючи в кишені страховий поліс, може з ним прямувати до найближчого казино, щоб відчути азарт гри. Відповідь проста як яблуко: тому, що одним людям за певних обставин подобається ризик, іншим – ні. Більш того, залежно від обставин для однієї і тієї самої особи ризик може бути привабливим, а може бути небажаним.

У роботі В. Крупнова наведений тест із журналу FORTUNE із якого можна визначити ставлення до ризику осіб, які бажають займатися бізнесом. Ось фрагмент цього тесту:

Ви переможець телевізійної гри-шоу. Який приз ви оберете:

1. 2 000 доларів готівкою ( 1 бал )

2. 50-відсотковий шанс виграти 4 000 доларів ( 3 бали )

3. 20-відсотковий шанс виграти 10 000 доларів ( 5балів )

4. 2-відсотковий шанс виграти 100 000 доларів (9балів)?

Згідно з умовами тестування, чим вища сума балів, тим більша схильність особи до ризику.

Неважко помітити, що особливістю отримання виграшу є участь у лотереях, причому кожна з них має однаковий сподіваний виграш – 2 000. Проте у першому випадку ця сума отримується певно, в інших – можна нічого не отримати. Якщо для особи є більш привабливими є лотереї, то очевидно вона схильна до ризику. Якщо ж для неї бажаним є отримання гарантованої суми, яка збігається з середнім виграшем у лотереї, то особа несхильна до ризику. Наведений приклад тесту практично відтворює класичні означення схильності, несхильності до ризику.

Для строгого означення ставлення до ризику потрібно знати, що таке лотерея за Нейманом-Моргенштерном.

Атом ризику, або лотерея за Нейманом-Моргенштерном.

Простою лотереєю називається гра (ситуація), в якій особа може отримати один і лише один з двох виграшів А та В, згідно з імовірностями 1- р та р.

Будемо позначати просту лотерею через L (А, р, В).

Просту лотерею можна розглядати як атом ризику, оскільки вона неподільна з точки зору відображення ризику. Будь-яке подальше спрощення простої лотереї приводить до того, що ризик у цій ситуацій зникає.

Поняття лотереї було запроваджене визначним математиком, фізиком та економістом Джоном фон Нейманом разом з Оскаром Моргенштерном в їх класичній праці. За їх задумом, проста лотерея – первісний атом ризику, з якого складаються більш складні ситуації.

Важливою характеристикою лотереї, за Нейманом-Моргенштерном, є середній (сподіваний) виграш.

Середнім (сподіваним) виграшем лотереї (якщо А та В вимірюються однаковими вимірниками, наприклад, у грошовій формі) називається математичне сподівання виграшу. Згідно позначенням математичного сподівання,

Середній виграш лотереї = (1 – р)А + рВ.

Ставлення до ризику: схильність, несхильність та нейтральність до ризику.

Якщо для особи більш привабливою є альтернатива отримання гарантованого виграшу лотереї, ніж участь у лотереї, то ця особа несхильна до ризику.

Якщо особа бажає взяти участь у лотереї, замість того, щоб отримати її гарантований середній виграш, то вона схильна до ризику.

Якщо особі байдуже чи брати участь у лотереї, чи отримати гарантовано середній виграш, то вона нейтральна до ризику.

Якщо для особи участь є еквівалентною отриманню певної суми гарантовано, то остання називається детермінованим еквівалентом цієї лотереї.

Розглянемо приклад. Для розробки нового товару потрібно 200 000 гривень. У разі успіху товару на ринку прибуток становитиме 1 мільйон, у протилежному випадку – прибутку не буде. Імовірність успіху оцінюється в 0,3.

Маємо лотерею L( - 200 000; 0,3; 1 000 000). Середній виграш лотереї становить величину 0,7(-200 000) + 0,3 1000 000 = 160 000.

Якщо для бізнесмена більш привабливим є отримання напевне суми в 160 000, ніж участь в описаному ризикованому заході, то цей бізнесмен буде несхильним до ризику у протилежному випадку – схильним.

На цьому прикладі можна прослідкувати зв’язок між детермінованим еквівалентом та ставленням до ризику. Припустимо, що детермінований еквівалент для описаної лотереї для бізнесмена становить 200 000. Це означає, що за участь у лотереї він заплатив би суму не більшу ніж 200 000. Отже, й суму 160 000 також. Це означає, в свою чергу, що бізнесмен схильний до ризику. Звідси – висновок: якщо детермінований еквівалент перевищує середній виграш лотереї, то особа – схильна до ризику, у протилежному випадку – несхильна.

Хто не ризикує, той ... ?

Фольклор, художня література, кінематограф у цілому позитивно ставляться до героїв, для яких мандрівка в малярійних джунглях, протиборство з ватажками мафії, здійснення фантастичного наукового проекту привабливіші, ніж навчання в бухгалтерському коледжі або робота в страховій фірмі. Зрештою, герої цього заслуговують. Але економіка базується не на героях, а на простих людях. Тому важливі певні уявлення про те, як вони ставляться до ризику.

Хто з нас не купував лотереї спортлото, не бився об заклад на кухоль пива чи щось подібне. Імовірність отримати виграш у лотереї – мізерна, але процес цікавий: барабан обертається й, може, щастя повернеться до нас обличчям? Та й втрати не такі великі ... Коли ж друзі б’ються об заклад, то теж великі суми не в ходу. Тому досить правдоподібною гіпотезою виглядає припущення про схильність більшості людей до ризику, якщо суми (чи об’єкти), якими ризикують, невеликі порівняно зі статком людини. Важливо підкреслити, що йдеться саме про суми відносно того, що має людина. Для когось 1 000 гривень – це недосяжна мрія, а хтось і втрати 10 000 не помітить. Все відносно ...

Що ж до значних сум, то ситуація кардинально змінюється. Припустимо, що винахідник оцінює успіх принципово нового пилососа своєї конструкції як „п’ятдесят на п’ятдесят”. У разі успіху він отримує 300 000 гривень прибутку, а у випадку невдачі – 100 000 збитку, що приблизно дорівнює його статку. Маємо лотерею з середнім виграшем:

(-100 000) 0,5 + 300 000 0,5 = 100 000.

Але більшість людей не погодилась би брати участь у подібній лотереї. Ступінь привабливості виграшу не перекриває жаху залишитись без нічого. Отже сформулюємо гіпотезу.

Більшість людей несхильна до ризику на значні для свого статку суми. Ризик може бути привабливим, якщо суми, якими ризикують, невеликі порівняно із статком.