При этом ранее определенные коэффициенты остаются без изменений. Определим коэффициент при дополнительном члене полинома
.Полином имеет вид
.По нему рассчитываем предсказанные значения отклика в точках плана (столбец
). Поверхность, построенная по полученному полиному, проходит точно через четыре точки плана ( =0), по которым определены коэффициенты. Однако в других точках области определения функции, например в центре плана (точка 5 в плане, х1=0, х2=0), предсказанные и действительные значения, могут не совпадать ( =3).Лекция 5. Планы дробного факторного эксперимента (планы ДФЭ)
При многофакторном эксперименте, особенно когда число факторов больше шести (n > 6), число опытов планов ПФЭ 2n (N = 2n) становится чрезмерным. Если нам не требуется определение всех коэффициентов неполного квадратичного полинома, то переходят к дробному факторному эксперименту (ДФЭ) – части полного факторного эксперимента. Так, например, если требуется определить лишь коэффициенты при самих факторах
,то план ПФЭ 2n дает избыточную информацию. Так при
, в этом случае требуется определить коэффициентов, тогда как по плану ПФЭ необходимо провести N = 26 =64 опыта.Хотя эта избыточная информация не является бесполезной, она позволяет более точно определить коэффициенты, но все же часто используют планы ДФЭ 2n-k , где k – показатель дробности плана ПФЭ. При k = 1 число опытов в плане ДФЭ в два раза меньше, чем в плане ПФЭ, поэтому такие планы называют полуреплика плана ПФЭ. Так при k=1 для плана ДФЭ 26-1 N =26-1 = 32, при k=2 для плана ДФЭ 26-2 N =26-2 = 16 и такой план называют четвертьрепликой, при k=3 для плана ДФЭ 26-3 N =26-3 = 8. При выборе дробности плана k необходимо учитывать, что число опытов должно быть больше числа членов уравнения. В рассматриваемом случае величина k должна быть такой, что бы удовлетворялось условие
.План ДФЭ строится, как и для плана ПФЭ, но с меньшим числом факторов. Оставшиеся факторы варьируются не произвольно, а так чтобы сохранялась ортогональность плана. Это обеспечивается, если оставшиеся факторы варьируются по выбранному генерирующему соотношению, например как произведение каких-либо факторов из первой группы. Но это приводит к тому, что в матрице Х будут существовать одинаковые столбцы. Следовательно, мы не сможем найти в чистом виде все коэффициенты неполного квадратичного полинома, а лишь определим совместную величину коэффициентов для одинаковых столбцов.
Рассмотрим построение плана ДФЭ 23-1 . Здесь n = 3, к =1, N=23-1=4. Первые два фактора варьируем как и ранее для плана ПФЭ 22, а для третьего фактора выбираем генерирующее соотношение в виде
.Для неполного квадратичного полинома количество столбцов плана составляет восемь.
План является ортогональным, но в нем оказались четыре пары одинаковых столбцов. Поэтому можно определить только четыре коэффициента, отражающие совместные влияния двух одинаковых столбцов
.Суммарные значения коэффициентов
; ; определяются аналогично. Это следствие того, что мы пытаемся определить полное количество коэффициентов – 8 по недостаточному числу опытов - 4. Однако, если заранее известно, что некоторые из членов уравнения равны нулю (пренебрежимо малы) или имеется априорная информация о величинах некоторых коэффициентов, то полученные коэффициенты могут быть вычленены. Так если , то .Если можно допустить, что коэффициенты из их смешанной оценки сопоставимы, то для рассмотренного плана
.Графическое изображение планов ПФЭ 23 и ДФЭ 23-1 в факторном пространстве (для трех факторов - трехмерное пространство) представлено на рис. 10. План ПФЭ 23 представлен кубом с восемью узлами (точками плана), а возможные планы ДФЭ 23-1 – проекциями этого куба на три плоскости. То есть из восьми узлов выбираются четыре (рис. 10, а). Из куба можно также выбрать четыре точки из восьми, не лежащие в одной плоскости, и сформировать план ДФЭ 23-1 (рис. 10, б).
Рис. 10. Графическое изображение планов ПФЭ 23 и ДФЭ 23-1 в факторном пространстве
Планы ДФЭ, как и планы ПФЭ, являются рототабельными. Планы ДФЭ могут быть как насыщенными так и ненасыщенными.
Достоинство планов ДФЭ заключается и в том, что если построенный на его основе неполный полином не удовлетворяет требованиям по точности, то план ДФЭ легко достраиваются до плана ПФЭ, без потери информации прежних опытах, с формированием более точного полинома.
Пример построения плана ДФЭ.
Построить план ДФЭ 24-1 и определить полином
Число факторов – 4. Нужно найти 8 коэффициентов полинома. Выбираем 8 из 16 опытов плана ПФЭ 24 таким образом, чтобы были определены независимые коэффициенты при самих факторах, смешанные коэффициенты при парных сочетаниях факторов и в пренебрежении тройными и четверным сочетаниями факторов и при этом сохранялась ортогональность плана.
Такой выбор позволяет сформировать план ДФЭ 24-1 как и план ПФЭ 23 , но с х4=х1х2х3 . План ДФЭ 24-1 представляется в виде
Значения коэффициентов полинома составляют:
Если принять, что
, , ,то полином имеет вид
.Значения полинома в точках плана приведены в последнем столбце плана ДФЭ 24-1. В нашем случае точность его достаточно высокая.
Лекция 6. Насыщенные планы первого порядка
Насыщенным планом первого порядка – называется план, содержащий n+1 точку (опыт). Например, при n = 4, N=n + 1 = 5.
То есть полином формируется в виде
.Таким образом, насыщенный план – это предельно минимальный случай плана ДФЭ. Такие планы называются симплекс-планы. Для симплекс-плана при n = 1 N = 2 его геометрическое изображение представлено на рис. 11, а; при n=2, N=3 – на рис. 11, б; при n=3, N=4 – на рис. 11, в. Симплекс-планы обычно используются на стадии предварительного исследования.
Рис. 11. Симплекс-план для n=1, N=2 (а); n=2, N=3 (б); n=3, N=4 (в)
Симплекс-план не всегда является ортогональным. Симплекс-план называется правильным, если расстояние между двумя любыми точками плана одинаковое. Симплекс-план называется центрированным, если
,для i=1, 2, …, n .
Применимость планов ПФЭ и пути повышения точности полиномов.
По каким же признакам можно судить о допустимости использования неполного квадратичного полинома, построенного на основе планов ПФЭ 2n?
Такие полиномы дают поверхность отклика, которая проходит точно через все экспериментальные точки, по которым определяются коэффициенты. Так как точки планов ПФЭ располагаются на границах диапазонов варьирования факторов, то это означает, что поверхность отклика проходит через граничные точки. В любом сечении поверхности отклика, полученной по такому полиному, плоскостью при фиксированных всех факторах кроме одного и параллельной оси Y получается след в виде прямой линии.