Возможны случаи, когда реальная поверхность отклика определяется полиномами второго и выше порядков В этом случае поверхность плана ПФЭ, совпадая с реальной поверхностью в граничных точках, может отличаться в других точках факторного пространства, например в центральной точке плана, т.е.
. Поэтому одним из признаков неудовлетворительной аппроксимации полиномами по плану ПФЭ является расхождение результатов функции отклика с реальной функцией в центральной точке плана.Однако при многофакторном эксперименте возможны случаи, когда в реальности функция отклика зависит, в том числе, от квадратов факторов, у которых коэффициенты имеют разные знаки, например, для “седловидной” поверхности. При этом, несмотря на то, что эта поверхность явно нелинейная, результат опыта в центральной точке может оказаться достаточно близким к полученному результату по неполному квадратичному полиному плана ПФЭ. Однако расхождения будут возникать во всех других точках плана эксперимента. Поэтому нецелесообразность использования плана ПФЭ определяется нелинейностью каких-либо сечений поверхности отклика. Косвенным признаком может служить расхождение
и в центральной точке плана.Если не удается получить полином по плану ПФЭ, хорошо аппроксимирующей реальную поверхность, то какие пути можно предложить для повышения точности полиномов?
Уменьшение диапазона варьирования факторов или его разбиение на поддиапазоны, для каждого из которых строится свой план ПФЭ и определяется свой полином. Путь достаточно трудоемок, но погрешность семейства планов ПФЭ снижается.
Выделение фактора, порождающий нелинейность, и построение для оставшихся n–1 факторов k планов ПФЭ, в каждом из которых выделенный фактор зафиксирован при некотором значении. На основе полученных k полиномов можно попытаться сформировать общий полином, коэффициенты которого являются функциями выделенного фактора. Этот путь также достаточно трудоемок.
Переход к плану ПФЭ с большим числом уровней варьирования факторов, например к планам с варьированием факторов на трех уровнях - планам ПФЭ 3n (рис. 12). В этом случае происходит резкое увеличение количества точек по сравнению с планом ПФЭ 2n . Так при n = 2 для ПФЭ 2n N=4, для ПФЭ 3n N=9; при n = 3 для ПФЭ 2n N=8, для ПФЭ 3n N=27; при n = 4 для ПФЭ 2n N=16, для ПФЭ 3n N=81 и т.д.
Рис. 12. Планы ПФЭ 32 (а) и ПФЭ 33 (б)
Достраивание планов ПФЭ 2n до планов более высокого порядка (чаще всего второго) и построение полных квадратичных полиномов (с наличием квадратов факторов).
Преобразование метрики матричного пространства, то есть переход к новым факторам функционально связанным с прежними факторами, но не порождающими нелинейности.
Лекция 7. Планы второго порядка
Они позволяют сформировать функцию отклика в виде полного квадратичного полинома, который содержит большее число членов, чем неполный квадратичный полином, сформированный по планам первого порядка, и поэтому требуют большего числа выполняемых опытов. Полный квадратичный полином при n =2 содержит 6 членов
,при n = 3 - 11 членов
Известно, что для получения квадратичной зависимости каждый фактор должен фиксироваться как минимум на трех уровнях.
Для планов второго порядка область планирования может:
Быть естественной, то есть включать область планирования планов первого порядка и дополнительные точки (такие планы называются композиционными). Дополнительные точки могут выходить за область плана первого порядка – единичного гиперкуба. В этом случае опыты в них реализуются при установлении факторов за пределами варьирования. Это надо учитывать при определении области совместимости факторов.
Не выходить за пределы единичного гиперкуба, то есть для всех точек плана выполняется условие
.Не выходить за пределы единичного гипершара, определяемую соотношением таких значений факторов в плане, что
.Во втором и третьем случаях используют специальные приемы выполнения приведенных соотношений в плане. План с одной областью планирования можно перестроить в план другой областью планирования.
Если уже был ранее сформирован план ПФЭ, но точность его функции отклика не удовлетворяет, то мы можем достроить этот план до плана второго порядка (композиционный план) и сформировать функцию отклика в виде полного квадратичного полинома, без потери информации о ранее сделанных опытах.
Ортогональный центрально-композиционный план второго порядка
Ортогональным планом называется такой план, у которого матрица планирования Х строится так, что бы матрица С=ХtХ оказалась диагональной. Используем этот подход и при построении планов второго порядка. План называется центральным, если все точки расположены симметрично относительно центра плана. ОЦКП – центральный симметричный ортогональный композиционный план.
В ОЦКП входят: ядро - план ПФЭ с N0= 2n точками плана, n0 (одна для этого плана) центральная точка плана
и по две “звездные” точки для каждого фактора . – плечо “звездных” точек.При этом в каждой плоскости, содержащей ось Y и координатную ось i-того фактора (проходящей через центр плана), оказываются три значения фактора хi
и три соответствующих значения Y.Общее количество точек в плане ОЦКП составляет
,где для ОЦКП n0=1.
При n > 2 в ОЦКП оказывается меньшее количество точек, чем в плане ПФЭ 3n .
Число точек в плане
n | 2 | 3 | 4 | 5 | 6 |
ОЦКП | 9 | 15 | 25 | 43 | 77 |
ПФЭ 32 | 9 | 27 | 81 | 243 | 729 |
Графическое представление ОЦКП для n=3 приведено на рис. 13.
Рис. 13. ОЦКП при n=3
Для ортогонального плана необходимо, чтобы выполнялось соотношение
.Так как
, то для столбцов j=1, 2,…., m+1 должно выполняться условие .Это означает необходимость выполнения требования, чтобы сумма элементов любого столбца (кроме j=0), включая столбцы, соответствующие квадратам фактора, должна быть равна нулю. Это возможно, если члены столбцов, соответствующих квадратам факторов, преобразованы, иначе сумма квадратов факторов не может быть равна нулю.
Преобразование элементов этих столбцов осуществляется в виде
,где а – величина, зависящая от числа факторов.
Сумма элементов столбца, соответствующего квадратам факторов
.Откуда
.В общем случае ортогональный центрально-композиционный план при трех (n) факторов имеет следующий вид
В ОЦКП каждый фактор фиксируется, в общем случае, на пяти уровнях (-
, -1, 0, 1, + ).Для определения неизвестных “а” и “
” нужно сформировать и решить систему из двух уравнений. Одно из них для “а” мы записали раннее. Другое уравнение получим из условия ортогональности для столбцов и .После простейших преобразований с учетом того, что
– общее число опытов в плане, получаем соотношение .Соотношение для а при j=1, 2 или 3 может быть записано как (см. план)
.Подставив его в последнее уравнение получаем
,откуда константа преобразования а
.Тогда
и плечо звездных точек
.