Кибернетика как наука об управлении объектом своего изучения имеет управляющие системы. Для того чтобы в системе могли протекать процессы управления, она должна обладать определенной степенью сложности. С другой стороны, осуществление процессов управления в системе имеет смысл только в том случае, если эта система изменяется, движется, т. е. если речь идет о динамической системе. Поэтому можно уточнить, что объектом изучения кибернетики являются сложные динамические системы. К сложным динамическим системам относятся: живые организмы (животные и растения), социально-экономические комплексы (организованные группы людей, бригады, подразделения, предприятия, отрасли промышленности, государства) и технические агрегаты (поточные линии, транспортные средства, системы агрегатов).
Однако, рассматривая сложные динамические системы, кибернетика не ставит перед собой задач всестороннего изучения их функционирования. Хотя кибернетика и изучает общие закономерности управляющих систем, их конкретные физические особенности находятся вне поля ее зрения. Так, при исследовании с позиций кибернетической науки такой сложной динамической системы, как мощная электростанция, мы не сосредоточиваем внимание непосредственно на вопросе о коэффициенте ее полезного действия, габаритах генераторов, физических процессах генерирования энергии и т. д. Рассматривая работу сложного электронного автомата, мы не интересуемся, на основе каких элементов (электромеханические реле, ламповые или транзисторные триггеры, ферритовые сердечники, полупроводниковые интегральные схемы) функционируют его арифметические и логические устройства, память и др. Нас интересует, какие логические функции выполняют эти устройства, как они участвуют в процессах управления. Изучая, наконец, с кибернетической точки зрения работу некоторого социального коллектива, мы не вникаем в биофизические и биохимические процессы, происходящие внутри организма индивидуумов, образующих этот коллектив.
Изучением всех перечисленных вопросов занимаются механика, электротехника, физика, химия, биология. Предмет кибернетики составляют только те стороны функционирования систем, которыми определяется протекание в них процессов управления, т. е. процессов сбора, обработки, хранения информации и ее использования для целей управления. Однако когда те или иные частные физико-химические процессы начинают существенно влиять на процессы управления системой, кибернетика должна включать их в сферу своего исследования, но не всестороннего, а именно с позиций их воздействия на процессы управления. Таким образом, предметом изучения кибернетики являются процессы управления в сложных динамических системах.
Основная цель кибернетики как науки об управлении — добиваться построения на основе изучения структур и механизмов управления таких систем, такой организации их работы, такого взаимодействия элементов внутри этих систем и такого взаимодействия с внешней средой, чтобы результаты функционирования этих систем были наилучшими, т. е. приводили бы наиболее быстро к заданной цели функционирования при минимальных затратах тех или иных ресурсов (сырья, человеческого труда, машинного времени, горючего и т. д.). Все это можно определить кратко термином «оптимизация». Таким образом, основной целью кибернетики является оптимизация систем управления.
К главным задачам кибернетики относятся:
а) установление фактов, общих для всех управляемых систем или, по крайней мере, для некоторых их совокупностей;
б) выявление ограничений, свойственных управляемым системам, и установление их происхождения;
в) нахождение общих законов, которым подчиняются управляемые системы;
г) определение путей практического использования установленных фактов и найденных закономерностей.
2.2 Методы кибернетики
Всеобщим методом познания, в равной степени применимым к исследованию всех явлений природы и общественной жизни, служит материалистическая диалектика. Однако, кроме общефилософского метода, в различных областях науки применяется большое количество специальных методов.
До недавнего времени в биологических и социально-экономических науках современные математические методы применялись в весьма ограниченных масштабах. Только последние десятилетия характеризуются значительным расширением использования в этих областях теории вероятностей и математической статистики, математической логики и теории алгоритмов, теории множеств и теории графов, теории игр и исследования операций, корреляционного анализа, математического программирования и других математических методов. Теория и практика кибернетики непосредственно базируются на применении математических методов при описании и исследовании систем и процессов управления, на построении адекватных им математических моделей и решении этих моделей на быстродействующих ЭВМ. Таким образом, одним из основных методов кибернетики является метод математического моделирования систем и процессов управления.
Системы изучаются в кибернетике по их реакциям на внешние воздействия, другими словами, по тем функциям, которые они выполняют. Наряду с вещественным и структурным подходами, кибернетика ввела в научный обиход функциональный подход как вариант системного подхода в широком смысле слова. Применение системного и функционального подходов при описании и исследовании сложных систем относится к основным методологическим принципам кибернетики.
Системный подход выражается в комплексном изучении системы с позиций системного анализа, т. е. анализа проблем и объектов как совокупности взаимосвязанных элементов, исходя из представлений об определенной целостности системы.
Функциональный анализ имеет своей целью выявление и изучение функциональных последствий тех или иных явлений или событий для исследуемого объекта. Соответственно, функциональный подход предполагает учет результатов функционального анализа при исследовании и синтезе систем управления.
Для исследования систем кибернетика использует три принципиально различных метода: математический анализ, физический эксперимент и вычислительный эксперимент.
Первые два из них широко применяются и в других науках. Сущность первого метода состоит в описании изучаемого объекта в рамках того или иного математического аппарата (например, в виде системы уравнений) и последующего извлечения различных следствий из этого описания путем математической дедукции (например, путем решения соответствующей системы уравнений). Сущность второго метода состоит в проведении различных экспериментов либо с самим объектом, либо с его реальной физической моделью. В случае уникальности исследуемого объекта и невозможности существенного влияния на него (как, например, в случае Солнечной системы или процесса биологической эволюции) активный эксперимент переходит в пассивное наблюдение.
2.3 Кибернетика и компьютеры
Из числа сложных технических преобразователей информации наибольшее значение имеют компьютеры. Компьютеры обладают свойством универсальности. Это означает, что любые преобразования буквенно-цифровой информации, которые могут быть определены произвольной конечной системой правил любой природы (арифметических, грамматических и др.), могут быть выполнены компьютером после введения в него составленной должным образом программы. Другим известным примером универсального преобразователя информации (хотя и основанного на совершенно иных принципах) является человеческий мозг. Свойство универсальности современных компьютеров открывает возможность моделирования г. их помощью любых других преобразователей информации, в том числе мыслительных процессов. Таким образом, с момента своего возникновения компьютеры представляют собой основное техническое средство, основной аппарат исследования, которым располагает кибернетика.
Точно так же, как разнообразные машины и механизмы облегчают физический труд людей, компьютеры облегчают его умственный труд, заменяя человеческий мозг в его наиболее простых и рутинных функциях. Компьютеры действуют по принципу «да-нет», и этого достаточно для того, чтобы создать вычислительные машины, хотя и уступающие человеческому мозгу в гибкости, но превосходящие его по быстроте выполнения вычислительных операций. Аналогия между компьютерами и мозгом человека дополняется тем, что компьютеры как бы играют роль центральной нервной системы для устройств автоматического управления.
Введенное в кибернетике понятие самообучающихся машин аналогично воспроизводству живых систем. И то, и другое подразумевает создание систем, подобных или идентичных родителю. Это относится как к машинам, так и к живым системам.
Процесс воспроизводства — это всегда динамический процесс, включающий какие-то силы или их эквиваленты. Винер так сформулировал гипотезу воспроизводства, которая позволяет предложить единый механизм самовоспроизводства для живых и неживых систем: «Один из возможных способов представления этих сил состоит в том, чтобы поместить активный носитель специфики молекулы в частотном строении ее молекулярного излучения, значительная часть которого лежит, по-видимому, в области инфракрасных электромагнитных частот или даже ниже. Может оказаться, что специфические вещества (вирусы) при некоторых обстоятельствах излучают инфракрасные колебания, обладающие способностью содействовать формированию других молекул вируса из неопределенной магмы аминокислот и нуклеиновых кислот. Вполне возможно, что такое явление позволительно рассматривать как некоторое притягательное взаимодействие частот».