Современные ЭВМ значительно превосходят те, которые появились на заре кибернетики. Еще 10 лет назад специалисты сомневались, что шахматный компьютер когда-нибудь сможет обыграть приличного шахматиста, однако теперь он почти на равных сражается с чемпионом мира. То, что машина чуть было, не выиграла у Каспарова за счет громадной скорости перебора вариантов (100 миллионов в секунду против двух у человека), остро ставит вопрос не только о возможностях компьютеров, но и о том, что такое человеческий разум.
Предполагалось два десятилетия назад, что ЭВМ будут с годами все более мощными и массивными, но вопреки прогнозам крупнейших ученых были созданы персональные компьютеры, которые стали повсеместным атрибутом нашей жизни. В перспективе нас ждет всеобщая компьютеризация и создание человекоподобных роботов.
3. Значение и результаты развития кибернетики
Значение кибернетики признано в разных сферах.
Философское значение, поскольку кибернетика дает новое представление о мире, основанное на роли связи, управления, информации, организованности, обратной связи, целесообразности, вероятности.
Социальное значение, поскольку кибернетика дает новое представление об обществе как организованном целом.
Общенаучное значение в трех смыслах: во-первых, потому что кибернетика дает общенаучные понятия, которые оказываются важными в других областях науки – понятия управления, сложнодинамической системы и т.п.; во-вторых, потому что дает науке новые методы исследования: вероятностные, стохастические, моделирования на ЭВМ и т.д.; в-третьих, потому что на основе функционального подхода «сигнал-отклик» кибернетика формирует гипотезы о внутреннем составе и строении систем, которые затем могут быть проверены в процессе содержательного исследования. Например, в кибернетике выработано правило (впервые для технических систем), в соответствии, с которым для того, чтобы найти ошибку в работе системы, необходима проверка работы трех одинаковых систем. По работе двух находят ошибку третьей. Возможно, так действует и мозг.
Методологическое значение кибернетики определяется тем обстоятельством, что изучение функционирования более простых технических систем используется для выдвижения гипотез о механизме работы качественно более сложных систем (живых организмов, мышления человека) с целью познания происходящих в них процессов: воспроизводства жизни, обучения и т.п. Подобное кибернетическое моделирование особенно важно в настоящее время во многих областях науки, поскольку отсутствуют математические теории процессов, протекающих в сложных системах, и приходится ограничиваться их простыми моделями.
Наиболее известно техническое значение кибернетики: создание на основе кибернетических принципов электронно-вычислительных машин, роботов, искусственного интеллекта, персональных компьютеров, породившее тенденцию кибернетизации и информатизации не только научного познания. Но и всех сфер жизни.
Достижением кибернетики является разработка и широкое использование нового метода исследования, получившего название вычислительного или машинного эксперимента, иначе называемого математическим моделированием. Смысл его в том, что эксперименты производятся не с реальной физической моделью изучаемого объекта, а с его математическим описанием, реализованным в компьютере. Огромное быстродействие современных компьютеров зачастую позволяет моделировать процессы в более быстром темпе, чем они происходят в действительности. В исследовании кибернетикой способов связи и моделей управления ей понадобилось еще одно понятие, которое было давно известно, но впервые получило фундаментальный статус в естествознании — понятие информации (с латинского — ознакомление) как меры организованности системы в противоположность понятию энтропии как меры неорганизованности.
Простираясь на изучение все более сложных систем, метод моделирования становится необходимым средством, как познания, так и преобразования действительности.
Развитие информационной техники позволило компенсировать человеку психофизиологическую ограниченность своего организма в ряде направлений. “Внешняя нервная система” , создаваемая и расширяемая человеком, уже дала ему возможность вырабатывать теории, открывать количественные закономерности, раздвигать пределы познания сложных систем. Искусственный интеллект и его совершенствование превращают границы сложности, доступные человеку, в систематически раздвигаемые. Это особенно важно в современную эпоху, когда общество не может успешно развиваться без рационального управления сложными и сверхсложными системами. Разработка проблем искусственного интеллекта является существенным вкладом в осознание человеком закономерностей внешнего и внутреннего мира, в их использование в интересах общества и тем самым в развитие свободы человека.
Литература
1. Большая Советская Энциклопедия (электронная библиотека DJVU).
2. Большая энциклопедия Кирилла и Мефодия 2010
3. Викпедия. Статья «Кибернетика».
4. Горелов А. А. Концепции современного естествознания: учебное пособие. – М.: Высшее образование, 2006. – 335с
5. Гусейханов М. К., Раджабов О. Р. Концепции современного естествознания: Учебник. — 6-е изд., перераб. и доп. — М.: Издательско-торговая корпорация «Дашков и К°», 2007. — 540 с.
6. КИБЕРНЕТИКА http://www.bibliotekar.ru/rInform/24.htm