Смекни!
smekni.com

Основы анализа и синтеза комбинационных логических устройств (стр. 11 из 14)

5. Получают логическую функцию в виде МДНФ с помощью карт Карно рис.5.6

х1х2х3х4 00 01 11 10 х1х2х3х4 00 01 11 10
00
х
1 00
1
х
1
01
1
х 1 01 х 1
11
1
х х 11
1
х х
10 1 х х 10
1
х х

у112х32х4

х1х2х3х4 00 01 11 10 х1х2х3х4 00 01 11 10
00
х
1 00 х
01
1
х 1 01
1
1 х 1
11
1 х
Х
11 1 1 х х
10 1 х Х 10 х х

Рис. 5.6. Карты Карно.

у44

Синтезируемая схема реализует четыре функции. Ее можно представить как простое объединение схем, реализующих каждую функцию отдельно. Но это не экономично. Целесообразно преобразовать совокупность этих функций к такому виду, чтобы реализующие их схемы содержали общие части, а схема с четырьмя выходами представляла собой единое целое.

Для выполнения этого условия, используя избыточные наборы входных переменных х1х2х3х4, которые отмечены на картах Карно крестиками, образуют минимальные покрытия для каждой из четырех функций, которые включали бы возможно больше однотипных объединений клеток на картах.

В итоге получают МНДФ логической функции:

у112х32х41234)

у44

5. Функциональная схема устройства на рис.5.7.

Рис. 5.7 Функциональная схема преобразователя кода прямого замещения в двоично-десятичный код 2421.

Пример 5.3. Синтезировать дешифратор для преобразования двоично-десятичного кода в код, предназначенный для управления десятичным индикатором (дешифратор 4

10).

Решение. 1. Двоично-десятичный код 2421 соответствует представлению числа в виде:

.

Поэтому дешифратор должен иметь четыре входа.

2. Для управления десятичным индикатором на выходе необходимо получить десятичное число, т.е. дешифратор должен иметь десять выходов.

Таким образом дешифратор представляет собой схему с четырьмя входами и десятью выходами. Составляют таблицу истинности для логической функции дешифратора (табл.5.9)

Таблица 5.9

Таблица истинности дешифратора

Десятичноечисло Двоично-десятичный код на входе код на выходе
х1 х2 х3 х4 у0 у1 у2 у3 у4 у5 у6 у7 у8 у9
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 1 0 0 0 0 0 0 0
3 0 0 1 1 0 0 0 1 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 1 0 0 0 0 0
5 0 1 0 1 0 0 0 0 0 1 0 0 0 0
6 0 1 1 0 0 0 0 0 0 0 1 0 0 0
7 0 1 1 1 0 0 0 0 0 0 0 1 0 0
8 1 0 0 0 0 0 0 0 0 0 0 0 1 0
9 1 0 0 1 0 0 0 0 0 0 0 0 0 1
1 0 1 0 ФУНККЦИЯНЕОПРЕДЕЛЕНА
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

4. Получают логическую функцию дешифратора в виде СДНФ путем записи " по единицам":

5. При синтезе функциональной схемы следует учитывать, отдельные функции содержат общие части, поэтому схему с десятью выходами представляют как единое целое (рис.5.8)

Рис. 5.8 Функциональная схема дешифратора для преобразования двоично-десятичного кода в код, предназначенный для управления десятичными индикаторами (дешифратор 4

10)

5.5 Шифраторы

Шифраторы выполняют функцию, обратную дешифраторам, т.е. преобразуют унитарный код в двоичный или двоично-десятичный.

Пример 5.4. Синтезировать шифратор на пять входов, выход которого представляется в двоичном коде.

Решение. 1. Шифратор преобразует унитарный код в двоичный или двоично-десятичный.

Унитарный код двоичного n-разрядного числа представляется 2n разрядами, только один из которых равен 1.

Шифратор имеет пять входов. Число 5 в двоичном коде представляется тремя разрядами: 101, т.е. шифратор должен иметь три выхода.

В соответствии с этим составляют табл.5.10

Таблица 5.10

Таблица истинности

х1 х2 х3 х4 х5 у1 у2 у3
0 0 0 0 0 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1

2. Получают логическую функцию шифратора в виде СДНФ путем записи "по единицам"