Смекни!
smekni.com

Основы дискретной математики (стр. 3 из 23)

Двоичное дерево – это дерево, у которого каждый узел имеет не более двух наследников. Пример бинарного дерева приведен на рисунке 1.5. Предполагая, что Key содержит значение, хранимое в данном узле, мы можем сказать, что бинарное дерево обладает следующим свойством: у всех узлов, расположенных слева от данного узла, значение соответствующего поля меньше, чем Key, у всех узлов, расположенных справа от него, – больше. Вершину дерева называют его корнем. Узлы, у которых отсутствуют оба наследника, называются листьями. Корень дерева на рисунке 1.3 содержит число 20, а листья – 4, 16, 37 и 43. Высота дерева – это длина наидлиннейшего из путей от корня к листьям. В нашем примере высота дерева равна 2.


Рисунок 1.3 – Двоичное дерево

Чтобы найти в дереве какое-то значение, мы стартуем из корня и движемся вниз. Например, для поиска числа 16, мы замечаем, что 16 < 20, и потому идем влево. При втором сравнении имеем 16 > 7, так что мы движемся вправо. Третья попытка успешна – мы находим элемент с ключом, равным 16.

Каждое сравнение вдвое уменьшает количество оставшихся элементов. В этом отношении алгоритм похож на двоичный поиск в массиве. Однако, все это верно только в случаях, когда наше дерево сбалансировано. На рисунке 1.4 показано другое дерево, содержащее те же элементы. Несмотря на то, что это дерево тоже бинарное, поиск в нем похож, скорее, на поиск в односвязном списке, время поиска увеличивается пропорционально числу запоминаемых элементов.

Рисунок 1.4 – Несбалансированное бинарное дерево

Вставка и удаление

Чтобы лучше понять, как дерево становится несбалансированным, посмотрим на процесс вставки пристальнее. Чтобы вставить 18 в дерево на рисунке 1.3 мы ищем это число. Поиск приводит нас в узел 16, где благополучно завершается. Поскольку 18 > 16, мы попросту добавляет узел 18 в качестве правого потомка узла 16 (рисунок 1.5).

Теперь мы видим, как возникает несбалансированность дерева. Если данные поступают в возрастающем порядке, каждый новый узел добавляется справа от последнего вставленного. Это приводит к одному длинному списку. Обратите внимание: чем более «случайны» поступающие данные, тем более сбалансированным получается дерево.

Удаления производятся примерно так же – необходимо только позаботиться о сохранении структуры дерева. Например, если из дерева на рисунке 1.5 удаляется узел 20, его сначала нужно заменить на узел 37. Это даст дерево, изображенное на рисунок 1.6. Рассуждения здесь примерно следующие. Нам нужно найти потомка узла 20, справа от которого расположены узлы с большими значениями. Таким образом, нам нужно выбрать узел с наименьшим значением, расположенный справа от узла 20. Чтобы найти его, нам и нужно сначала спуститься на шаг вправо (попадаем в узел 38), а затем на шаг влево (узел 37); эти двухшаговые спуски продолжаются, пока мы не придем в концевой узел, лист дерева.

Рисунок 1.5 – Бинарное дерево после добавления узла 18
Рисунок 1.6 – Бинарное дерево после удаления узла 20

Разделенные списки

Разделенные списки – это связные списки, которые позволяют вам прыгнуть (skip) к нужному элементу. Это позволяет преодолеть ограничения последовательного поиска, являющегося основным источником неэффективного поиска в списках. В то же время вставка и удаление остаются сравнительно эффективными. Оценка среднего времени поиска в таких списках есть O (lg n). Для наихудшего случая оценкой является O(n), но худший случай крайне маловероятен.

Идея, лежащая в основе разделенных списков, очень напоминает метод, используемый при поиске имен в адресной книжке. Чтобы найти имя, вы помечаете буквой страницу, откуда начинаются имена, начинающиеся с этой буквы. На рисунке 1.6, например, самый верхний список представляет обычный односвязный список. Добавив один «уровень» ссылок, мы ускорим поиск. Сначала мы пойдем по ссылкам уровня 1, затем, когда дойдем до нужного отрезка списка, пойдем по ссылкам нулевого уровня.

Эта простая идея может быть расширена – мы можем добавить нужное число уровней. Внизу на рисунке 1.6 мы видим второй уровень, который позволяет двигаться еще быстрее первого. При поиске элемента мы двигаемся по этому уровню, пока не дойдем до нужного отрезка списка. Затем мы еще уменьшаем интервал неопределенности, двигаясь по ссылкам 1‑го уровня. Лишь после этого мы проходим по ссылкам 0‑го уровня.

Вставляя узел, нам понадобится определить количество исходящих от него ссылок. Эта проблема легче всего решается с использованием случайного механизма: при добавлении нового узла мы «бросаем монету», чтобы определить, нужно ли добавлять еще слой. Например, мы можем добавлять очередные слои до тех пор, пока выпадает «решка». Если реализован только один уровень, мы имеем дело фактически с обычным списком и время поиска есть O(n). Однако если имеется достаточное число уровней, разделенный список можно считать деревом с корнем на высшем уровне, а для дерева время поиска есть O (lg n).

Поскольку реализация разделенных списков включает в себя случайный процесс, для времени поиска в них устанавливаются вероятностные границы. При обычных условиях эти границы довольно узки. Например, когда мы ищем элемент в списке из 1000 узлов, вероятность того, что время поиска окажется в 5 раз больше среднего, можно оценить как 1/ 1,000,000,000,000,000,000 (рисунок 1.7).

Рисунок 1.7 – Устройство разделенного списка

1.2.3 Оценки времени исполнения

Для оценки эффективности алгоритмов можно использовать разные подходы. Самый бесхитростный – просто запустить каждый алгоритм на нескольких задачах и сравнить время исполнения. Другой способ – оценить время исполнения. Например, мы можем утверждать, что время поиска есть O(n) (читается так: о большое от n). Это означает, что при больших n время поиска не сильно больше, чем количество элементов. Когда используют обозначение O(), имеют в виду не точное время исполнения, а только его предел сверху, причем с точностью до постоянного множителя. Когда говорят, например, что алгоритму требуется время порядка O(n2), имеют в виду, что время исполнения задачи растет не быстрее, чем квадрат количества элементов. Чтобы почувствовать, что это такое, посмотрите таблицу 1.1, где приведены числа, иллюстрирующие скорость роста для нескольких разных функций. Скорость роста O(log2n) характеризует алгоритмы типа двоичного поиска.

Таблица 1.1 – Скорость роста нескольких функций O()

n log2 n nlog2 n n1.25 n2
1 0 0 1 1
16 4 64 32 256
256 8 2,048 1,024 65,536
4,096 12 49,152 32,768 16,777,216
65,536 16 1,048,565 1,048,476 4,294,967,296
1,048,476 20 20,969,520 33,554,432 1,099,301,922,576
16,775,616 24 402,614,784 1,073,613,825 281,421,292,179,456

Если считать, что числа в таблице 1.1 соответствуют микросекундам, то для задачи с 1048476 элементами алгоритму со временем работы O(log2 n) потребуется 20 микросекунд, алгоритму со временем работы O(n1.25) – порядка 33 секунд, алгоритму со временем работы O(n2) – более 12 дней. В нижеследующем тексте для каждого алгоритма приведены соответствующие O‑оценки. Более точные формулировки и доказательства можно найти в [12], [15].

Как мы видели, если массив отсортирован, то искать его элементы необходимо с помощью двоичного поиска. Однако не забудем, что массив должен быть отсортированным! В следующем разделе мы исследует разные способы сортировки массива. Оказывается, эта задача встречается достаточно часто и требует заметных вычислительных ресурсов, поэтому сортирующие алгоритмы исследованы вдоль и поперек, известны алгоритмы, эффективность которых достигла теоретического предела.

Связанные списки позволяют эффективно вставлять и удалять элементы, но поиск в них последователен и потому отнимает много времени. Имеются алгоритмы, позволяющие эффективно выполнять все три операции.

1.2.4 Сортировки

Сортировка вставками

Один из простейших способов отсортировать массив – сортировка вставками. В обычной жизни мы сталкиваемся с этим методом при игре в карты. Чтобы отсортировать имеющиеся у вас карты, вы вынимаете карту, сдвигаете оставшиеся карты, а затем вставляете карту на нужное место. Процесс повторяется до тех пор, пока хоть одна карта находится не на месте. Как среднее, так и худшее время для этого алгоритма – O(n2). Дальнейшую информацию можно получить в книге Кнута [4].

На рисунке 1.8 (a) мы вынимаем элемент 3. Затем элементы, расположенные выше, сдвигаем вниз – до тех пор, пока не найдем место, куда нужно вставить 3. Это процесс продолжается на рисунке 1.8 (b) для числа 1. Наконец, на рисунке 1.8 (c) мы завершаем сортировку, поместив 2 на нужное место.

Рисунок 1.8 – Сортировка вставками