Смекни!
smekni.com

Особенности вычисления определителя матрицы (стр. 2 из 2)

;МЕНЯЕМ J СТРОКУ И НАЙДЕННУЮ

(DO

((K 0))

((>= K SIZE))

(SETF (AREF R K) (AREF MATRIX J K))

(SETF (AREF MATRIX J K) (AREF MATRIX II K))

(SETF (AREF II K) (AREF R K))

(SETQ K (+ K 1))

)

)

)

;ПРЯМОЙ ХОД

;ПРИВЕДЕНИЕ К ТРЕУГОЛЬНОМУ ТИПУ

(DO

((I (+ J 1)))

((>= I SIZE))

;ЕСЛИ (AREF MATR I J)=0 ДЕЛАТЬ НИЧЕГО НЕ НАДО

(IF (/= (AREF MATRIX I J) 0)

(PROGN

(SETQ PAR (/ (AREF MATRIX I J) (AREF MATRIX J J)))

(DO

((JJ J))

((>= JJ SIZE))

(SETF (AREF MATRIX J JJ) (* (AREF MATRIX J JJ) PAR))

(SETF (AREF MATRIX I JJ) (- (AREF MATRIX I JJ) (AREF MATRIX J JJ)))

(SETF (AREF MATRIX J JJ) (/ (AREF MATRIX J JJ) PAR))

(SETQ JJ (+ JJ 1))

)

)

)

(SETQ I (+ I 1))

)

(SETQ J (+ J 1))

)

(IF (/= T_ 0)

(PROGN

(DO

((I 0))

((>= I SIZE))

(SETQ DET (* DET (AREF MATRIX I I)))

(SETQ I (+ I 1))

)

)

;ИНАЧЕ

(SETQ DET 0)

)

;ВОЗВРАЩАЕМ ОПРЕДЕЛИТЕЛЬ

DET

)

(SETQ N 0)

(SETQ INPUT_STREAM (OPEN " D:\MATRIX.TXT" :DIRECTION :INPUT))

;РАЗМЕР МАТРИЦЫ

(SETF N (READ INPUT_STREAM))

(SETQ MATR (MAKE-ARRAY (LIST N N) :ELEMENT-TYPE 'FLOAT :INITIAL-ELEMENT 0))

(SETF MATR (READ INPUT_STREAM))

(CLOSE INPUT_STREAM)

(SETQ DETERM (DETERMINANT MATR N))

;РЕЗУЛЬТАТ

(SETQ OUTPUT_STREAM (OPEN " D:\DETERMINANT.TXT" :DIRECTION :OUTPUT))

;ЗАПИСЫВАЕМ ОПРЕДЕЛИТЕЛЬ

(PRINT 'DETERMINANT OUTPUT_STREAM)

(PRINT DETERM OUTPUT_STREAM)

;ЗАКРЫВАЕМ ФАЙЛ

(TERPRI OUTPUT_STREAM)

(CLOSE OUTPUT_STREAM)


5 Пример выполнения программы

Пример 1.

Рисунок 2 – Входные данные

Рисунок 3 – Выходные данные

Пример 2.

Рисунок 4 – Входные данные

Рисунок 5 – Выходные данные

Пример 3.

Рисунок 6 – Входные данные

Рисунок 7 – Выходные данные


Заключение

Проблема повышения качества вычислений, как несоответствие между желаемым и действительным, существует и будет существовать в дальнейшем. Ее решению будет содействовать развитие информационных технологий, которое заключается как в совершенствовании методов организации информационных процессов, так и их реализации с помощью конкретных инструментов – сред и языков программирования.

Итогом работы можно считать созданную функциональную модель для вычисления определителя методом исключения Гаусса. Созданная функциональная модель и ее программная реализация могут служить органической частью решения более сложных задач.


Список использованных источников и литературы

1. Бронштейн, И.Н. Справочник по математике для инженеров и учащихся втузов [Текст] / И.Н. Бронштейн, К.А. Семендяев. – М.: Наука, 2007. – 708 с.

2. Васильев, Ф.П. Численные методы решения экстремальных задач. [Текст] / Ф.П. Васильев – М.: Наука, 2002. C. 415.

3. Калиткин, Н.Н. Численные методы. [Электронный ресурс] / Н.Н. Калиткин. – М.: Питер, 2001. С. 504.

4. Кнут, Д.Э. Искусство программирования. Основные алгоритмы [Текст] / Д.Э. Кнут. – М.: Вильямс, 2007. Т.1. – 712 с.

5. Метод Гаусса [Электронный ресурс] – Режим доступа: http://www.wikipedia.org/wiki/Метод_Гаусса.

6. Степанов, П.А. Функциональное программирование на языке Lisp. [Электронный ресурс] / П.А.Степанов, А.В. Бржезовский. – М.: ГУАП, 2003. С. 79.

7. Симанков, В.С. Основы функционального программирования [Текст] / В.С. Симанков, Т.Т. Зангиев, И.В. Зайцев. – Краснодар: КубГТУ, 2002. – 160 с.

8. Хювенен Э. Мир Лиспа [Текст] / Э. Хювенен, Й. Сеппянен. – М.: Мир, 1990. – 460 с.