Hельзя сравнивать размер шага для трубок разных типов: шаг точек ("триад") трубки с теневой маской измеряется по диагонали, в то время как шаг апертурной решетки, иначе называемый горизонтальным шагом точек, - измеряется погоризонтали. Поэтому при одинаковом шаге точек трубка с теневой маской имеетбольшую плотность точек, чем трубка с апертурной решеткой. Оба типа трубок имеютсвои преимущества и своих сторонников. Трубки с теневой маской дают более точноеи детализированное изображение, поскольку свет проходит через отверстия в маске с четкими краями. Поэтому мониторы с такими ЭЛТ хорошо использовать приинтенсивной и длительной работе с текстами и мелкими элементами графики, например, в CAD/CAM-приложениях. Трубки типа Trinitron имеют более ажурнуюмаску, она меньше заслоняет экран и позволяет получить более яркое, контрастноеизображение в насыщенных цветах. Мониторы с такими трубками хорошо подходят для настольных издательских систем и других приложений, ориентированных наработу с цветными изображениями. Посмотрев на включенный экран, особенно набелый фон, можно заметить тонкие нити, идущие поперек решетки, онистабилизируют ее положение. Из-за более сложной конструкции дисплеи с такимитрубками обычно немного дороже аналогичных моделей с теневой маской.
Конечно оптимальная разрешающая способность зависит от размеров экрана: например, разрешение 1024x768, установленное на 15-дюймовом мониторе, можетповысить напряжение глаз, в то время как на 17-дюймовом дисплее оно будет вполне уместно. Измеряемая в герцах частота смены кадров (или частота регенерацииизображения) показывает, как быстро могут быть перерисованы все пикселы экрана.Более высокая частота смены кадров делает изображение устойчивее, а пониженнаячастота может привести к нежелательному мерцанию - едва заметному, но вызывающему излишнее напряжение глаз. Максимальная частота регенерацииизображения зависит от установленной разрешающей способности, а при заданномразрешении - определяет качество изображения.
Ассоциация стандартов видеоэлектроники (Video Electronics Standards Association, VESA) установила частоту смены кадров 85 Гц в качестве стандарта для свободных от нежелательного мерцания мониторов.
Разрешающая способность и частота регенерации - основные параметры длясогласования монитора и видеоплаты компьютерной системы. Важным параметром монитора является ширина полосы частот. Это важный показатель дляопределения лучшей разрешающей способности устройства. Полоса частот дисплеяхарактеризует его возможности в отношении поступающего с графической картывидеосигнала. Чем выше разрешающая способность и частота сменыкадров, тем шире требуемая полоса пропускания.
Практически все мониторы оснащены легкодоступными органами управления на передней панели.Это могут быть кнопки или вращающиеся ручки. Стало стандартом цифровое управление монитором. Благодаря цифровым системам увеличивается точность настройки,которая, как правило, и сохраняется на более длительный период. У современных дисплеев расширен перечень регулировок. Экранный интерфейс управления устройством в целом облегчает настройку и обеспечивает немедленную обратную связь с монитором,повышая вероятность более точной его настройки.
Основные функции управления включают в себя: установку горизонтального и вертикального размера изображения, а также его сдвиг по вертикали и горизонтали,размагничивание, регулировку яркости и контраста. Большинство мониторов имеютдополнительные функции управления геометрией изображения: устранениеподушкообразных и трапецеидальных искажений, сжатие/растяжение прямоугольникаэкрана и поворот изображения. В некоторых устройствах возможно также устранениемуара (комбинационных искажений), регулировка сведения луча, цветовой температуры и уровней усиления красного, зеленого и синего компонентов сигнала.
Для мониторов с трубкой типа Trinitron:
MPH = горизонтальныйразмер/горизонтальный шаг полосок;
MPV = вертикальный размер/вертикальный шагполосок.
Для 17-дюймового монитора с трубкой типа Trinitron, шагомполосок 0,25 мм по горизонтали и 0,40 мм по вертикали и размером используемой области экрана 320x240 мм получим максимальную реальную разрешающую способность 1280x600 точек: 320/0,25 = 1280 MPH ; 240/0,40= 600 MPV.
Движением луча по диагонали управляет строчная развертка, по вертикали - кадровая развертка.
Рис.3. Кадровая и строчная развертка
Сигналы обратного хода возвращают луч в начало строки или кадра.На рисунке 3 приведены диаграммы пилообразного напряжения строчной и кадровой развертки.
Видеосигнал поступает в монитор с платы адаптера. Вместе с видеосигналом поступают сигналы вертикальной и горизонтальной синхронизации.
Частота кадровой развертки определяет частоту (обновления) регенерации экрана. Чем выше частота регенерации, тем меньше заметно мерцание экрана. Чем меньше размер зерна люминофора, и чем больше строк прочерчивает луч за время кадровой развертки, тем более четким будет изображение. Стандартами кадровой частоты являются частоты 56, 60, 72, 75, 85 Гц. Верхняя граница кадровой частоты ограничена, т.к. считается, что мерцание на частотах свыше 110 Гц глаз человека уже не различает. Частота строк определяется в Кгц, как произведение частоты кадров на количество строк в кадре, например, 800(строк) х 85 =68КГц.
Полоса пропускания видеосигнала определяет насколько высокие частоты может содержать видеосигнал. Определить полосу пропускания можно как произведение количества точек в строке на частоту строчной развертки, так как за период горизонтальной развертки луч должен изменить значение интенсивности на каждом пикселе.
Чтобы улучшить качество изображения может применяться чересстрочная развертка. При строчной развертке за период кадровой развертки выводятся все строки кадра. При чересстрочной развертке вывод кадра осуществляется за два периода кадровой развертки (через строку) - это позволяет увеличить разрешение экрана, но приводит к появлению мерцания экрана.
Все современные мониторы можно разделить на 3 группы:
-Мониторы с фиксированной частотой;
-Мониторы с несколькими фиксированными частотами;
-Мультичастотные или мультисканирующие мониторы.
Мониторы с фиксированной кадровой частотой менее критичны к значениям частот синхроимпульсов, т.к. используется лишь одна частота синхронизации импульсов.
Мониторы с несколькими фиксированными частотами допускают использование набора частот кадровых и строчных синхроимпульсов.
Мультичастотные мониторы настраиваются на произвольную частоту синхросигнала в заданном диапазоне 30-64 кГц - строчной и 50-100 Гц кадровой развертки.
6. Современные ЖК мониторы
Современные ЖК мониторы также называют плоскими панелями, активными матрицами двойного сканирования, матрицами с тонкопленочными транзисторами. Сейчас они становятся популярными привлекает их изящный вид, компактность, экономичность (15-30 ватт). Ранее инертные, теперь они обеспечивают качественное контрастное, яркое, отчетливое изображение. Первые матричные технологии, так называемые пассивные матрицы неплохо работали с текстовой информацией, но при резкой смене картинки на экране оставались так называемые "призраки". Поэтому такого рода устройства не подходили для просмотра видеофильмов и для игр. Так как жидкокристаллическая технология адресует каждый пиксель отдельно, четкость получаемого текста выше в сравнении с монитором на ЭЛТ.
Существует два вида ЖК мониторов: DSTN (dual-scan twisted nematic - кристаллические экраны с двойным сканированием) и TFT (thin film transistor на тонкопленочных транзисторах), также их называют соответственно пассивными и активными матрицами. Такие мониторы состоят из следующих слоев: поляризующего фильтра, стеклянного слоя, электрода, слоя управления, жидких кристаллов, ещё одного слоя управления, электрода, слоя стекла и поляризующего фильтра.
Рис. 4. Устройство TFT монитора (thin film transistor - на тонкопленочных транзисторах)
В первых компьютерах использовались восьмидюймовые (по диагонали) пассивные черно-белые матрицы. С переходом на технологию активных матриц, размер экрана вырос. Практически все современные ЖК мониторы используют панели на тонкопленочных транзисторах, обеспечивающих яркое, четкое изображение.
Как работает ЖК монитор
Рис.5. Сетка пикселей экрана жидкокристаллического монитора
Поперечное сечение панели на тонкопленочных транзисторах представляет собой многослойный бутерброд (рис. 4). Крайний слой любой из сторон выполнен из стекла. Между этими слоями расположен тонкопленочный транзистор, панель цветного фильтра, обеспечивающая нужный цвет - красный, синий или зеленый, и слой жидких кристаллов. Вдобавок ко всему существует флуоресцентная подсветка, освещающая экран изнутри.
При нормальных условиях, когда нет электрического заряда, жидкие кристаллы находятся в аморфном состоянии. В этом состоянии жидкие кристаллы пропускают свет. Количеством света, проходящего через жидкие кристаллы, можно управлять с помощью электрических зарядов - при этом изменяется ориентация кристаллов.
Как и в традиционных электроннолучевых трубках, пиксель формируется из трех участков - красного, зеленого и синего. А различные цвета получаются в результате изменения величины соответствующего электрического заряда (что приводит к повороту плоскости поляризации жидкого кристалла и изменению яркости проходящего светового потока).
TFT экран состоит из целой сетки таких пикселей, где работой каждого цветового участка каждого пикселя управляет отдельный транзистор (рис.5). Для нормального обеспечения экранного разрешения 1024х768 (в режиме SVGA) жидкокристаллическая панель должна располагать именно таким количеством пикселей.