Смекни!
smekni.com

Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів (стр. 5 из 5)

06

/ \

42

/ \ / \

9418

Характерно, що такий метод просіювання залишає незмінними умови (1), які визначають піраміду.

Р. Флойд запропонував певний "лаконічний" алгоритм побудови піраміди "на тому ж місці". Вважається, що деяка частина елементів масиву a m , a 2 , ..., a N (m=Ndiv2) вже утворює піраміду - нижній шар відповідного бінарного дерева, для них ніякої впорядкованості не вимагається. Тепер піраміда розширюється вліво; кожен раз добавляється і просіюваннями ставитться у відповідну позицію новий елемент. Ці дії реалізуються проседурою Sift :

Procedure Sift(L, R : integer);

Var

i, j : integer; x : basetype;

Begin

i:=L; j:=2*L; x:=a[L];

if (j<R) and (a[j+1]<a[j]) then j:=j+1;

while (j<=R) and (a[j]<x) do

begin

a[i]:=a[j]; a[j]:=x; i:=j; j:=2*j;

if (j<R) and (a[j+1]<a[j]) then j:=j+1

end

End;

Такимчином, процесформуванняпірамідиізNелементівa 1 , ..., a N "натомужмісці" єповторюванимвиконаннямпроцедури Sift призмініпараметраL=Ndiv2, ..., 1 :

L:=N div 2 +1;

while L>1 do

begin

L:=L-1;

Sift(L, N)

end;

Для ілюстації алгоритму розглянемо попередній варіант масиву :

44 |

44 |

44 |

44 | 42

06

Тут жирним шрифтом виділені добавлювані до піраміди елементи; підкреслені - елементи, з якими проводився обмін.

Для того, щоб отримати не тільки часткове, а і повне впорядкування серед елементів послідовності, потрібно виконати N зсувних етапів. Після кожного проходу на вершину дерева виштовхуватиметься черговий найменший ключ. Знову виникає питання : де зберігати "спливаючі" верхні елементи і чи можна проводити перестановки "на тому ж місці"? Це легко реалізувати, якщо кожен раз брати останню компоненту піраміди - це буде просіюваний ключ x, ховати верхній елемент з попереднього етапу в звільнене позицію, а x зсувати на відповідне місце. Зрозуміло, що після кожного етапу розглядувана піраміда буде скорочуватися на один елемент справа. Таким чином, впорядкування масиву буде здійснено за N-1 прохід :

06 42 12 55 94 18 44 67обмін 67 і 06

67 42 12 55 94 18 44 | 06просіювання 67

12 42 18 55 94 67 44 | 06обмін 44 і 12

44 42 18 55 94 67 | 12 06просіювання 44

18 42 44 55 94 67 | 12 06обмін 67 і 18

67 42 44 55 94 | 18 12 06просіювання 67

42 55 44 67 94 | 18 12 06обмін 94 і 42

94 55 44 67 | 42 18 12 06просіювання 94

44 55 94 67 | 42 18 12 06обмін 67 і 44

67 55 94 | 44 42 18 12 06просіювання 67

55 67 94 | 44 42 18 12 06обмін 94 і 55

94 67 | 55 44 42 18 12 06просіювання 94

67 94 | 55 44 42 18 12 06обмін 94 і 67

94 | 67 55 44 42 18 12 06просіювання 94

94 | 67 55 44 42 18 12 06

Тут жирним шрифтом виділені просіювані по піраміді елементи; підкреслені - елементи, між якими проводився обмін.

Процес сортування описується за допомогою процедури Sift таким чином:

R:=N;

while R>1 do

begin

x:=a[1]; a[1]:=a[R]; a[R]:=x;

R:=R-1;

Sift(1, R)

end;

Як видно з прикладу, отриманий порядок ключів фактично є зворотнім. Це легко виправити, помінявши напрямок відношення порівняння в процедурі Sift на протилежний. Остаточно процедура сортування масиву методом Heap Sort матиме вигляд :

Procedure Heap_Sort;

Var

L, R : integer; x : basetype;

Procedure Sift(L, R : integer);

Var

i, j : integer; x : basetype;

Begin

i:=L; j:=2*L; x:=a[L];

if (j<R) and (a[j]<a[j+1]) then j:=j+1;

while (j<=R) and (x<a[j]) do

begin

a[i]:=a[j]; a[j]:=x; i:=j; j:=2*j;

if (j<R) and (a[j]<a[j+1]) then j:=j+1

end

End;

Begin

L:=N div 2 +1; R:=N;

while L>1 do

begin L:=L-1; Sift(L, N) end;

while R>1 do

begin

x:=a[1]; a[1]:=a[R]; a[R]:=x;

R:=R-1;

Sift(1, R)

end

End;

Аналізалгоритму Heap Sort.Яквжеранішевідмічалося, складністьалгоритмупоопераціяхпорівнянняєвеличиноюпорядкуO(N*log(N)+N). Кількість переміщень елементів суттєво залежить від стартового розміщення ключів в послідовності.

Однак при початково-впорядкованому масиві не слід чекати максимальної ефективності. Адже об’єм перестановок в цьому випадку є досить великим під час просіювання "важких" елементів після побудови піраміди. Фактично на кожному етапі такого просіювання виконується log(K) перестановок плюс ще N-1 обмін перед просіюванням, де K - кількість елементів в піраміді, в якій проводиться просіювання. Таким чином, в цьому випадку

.

Тому можна вважати, що розглядуваний метод як і по порівняннях так і по перестановках має ефективність порядку O(N*log(N)+N).

2.5 Порівняльна характеристика швидкодії деяких швидких алгоритмів сортування

Щоб порівняти швидкодію певних алгоритмів сортування, зокрема Quick_Sort, Heap_Sort, Shell_Sort, ми створили одновимірний масив із елементів n=50000, типу integer. При цьому розглядалися різні варіанти масиву А(n). А саме, коли вихідний масив А(n) вже є відсортований за зростанням (за спаданням), коли всі члени масиву А(n) рівні, а також, коли елементи масиву генеруються випадковим чином. За отриманими результатами ми подували таблицю, яка дає змогу проаналізувати дані, і виявити кращі алгоритми сортування у різних випадках.

Алгоритм сортування Сортування відсортованого масиву по зростанню (мс) Сортування по зростанню відсортованого масиву по спаданню (мс) Сортування масиву, всі елементи однакові (мс) Сортування масиву генерованого випадковим чином (мс)
1 Quick_Sort 17000 11000 14 25
2 Heap_Sort 40 40 8 55
3 Shell_Sort 40 50 46 77

Висновки

Отже, ми розглянули як працюють швидкі алгоритми сортування іь спробували визначити їх складність.

Застосування того чи іншого алгоритму сортування для вирішення конкретної задачі є досить складною проблемою, вирішення якої потребує не лише досконалого володіння саме цим алгоритмом, але й всебічного розглядання того чи іншого алгоритму, тобто визначення усіх його переваг і недоліків.

Звичайно, необхідність застосування саме швидких алгоритмів сортування очевидна. Адже прості алгоритми сортування не дають бажаної ефективності в роботі програми. Але завжди треба пам’ятати й про те, що кожний швидкий алгоритм сортування поряд із своїми перевагами може містити і деякі недоліки.

Так, алгоритм сортування деревом, хоча й працює однаково на всіх входах (так, що його складність в гіршому випадку співпадає зі складністю в середньому), але цей алгоритм має і досить суттєвий недолік: для нього потрібна додаткова пам’ять розміром 2n-1.

Розглядаючи такий швидкий алгоритм сортування, як пірамідальне сортування, можна зазначити, що цей алгоритм ефективніший ніж попередній, адже він сортує "на місці" , тобто він не потребує додаткових масивів. Крім того, цей алгоритм (" з точністю до мультиплікативної константи" (4,74)) оптимальний: його складність співпадає з нижньою оцінкою задачі, тобто за критеріями C(n) та M(n) він має складність O(n log2 n), але містить складний елемент в умові. Тобто, в умові A[left] має бути строго менше ніж x , а A[right] - строго більше за x. Якщо ж замість "строго більше" та "строго менше" поставити знаки, що позначають "більше, або дорівнює" та "менше, або дорівнює", то індекси left і right пробіжать увесь масив і побіжать далі. Вийти з цієї ситуації можна було б шляхом ускладнення умов продовження перегляду, але це б погіршило ефективність програми.

В нашій роботі ми розглянули деякі швидкі алгоритми сортування та їх реалізацію мовою Pascal, виконуючи курсову роботу ми реалізували програмно не лише використання швидких методів сортування, а і прямих, дослідили не лише переваги таких алгоритмів, ефективність їх використання, але й визначили деякі недоліки окремих алгоритмів, що заважають вживати їх для вирішення першої ліпшої задачі сортування. Програма, в якій міститься реалізація та демонстрація наявних прямих методів сортування називається Prjami.pas, а швидкі - Shvud.pas.

Отже, головною задачею, яку має вирішити людина, яка повинна розв’язати задачу сортування – це визначення як позитивних, так і усіх негативних характеристик різних алгоритмів сортування, передбачення кінцевого результату. До того ж , треба враховувати головне – чи , можливо, цю задачу задовольнить один з класичних простих алгоритмів сортування.


Література

1. Абрамов С. А., Зима Е. В. Начала программирования на языке Pascal. - М.: Наука, 1987.

2. Абрамов В. Г. Введение в язык Pascal: Учебное пособие для студентов вузов по специальности Прикладная математика. – М.: Наука, 1988.

3. Власик А.П. Практикум з програмування в середовищі TurboPascal.Ч 1.- Рівне: НУВГП, 2005. – 179 с.

4. Джонс Ж., Харроу К. Решение задач в системе Турбо-Паскаль/ Перевод с английского Улановой, Широкого. – М.: Финансы и статистика, 1991.

5. Зуев Е. А. Язык программирования Турбо Паскаль 6.0, 7.0. – М.: Радио и связь, 1993.

6. Кнут Д.Э. Искуство програмирования, том 3. Поиск и сортировка, 3-е изд.: Пер. с англ.: Уч. Пос. – М.:Издательский дом "Вильямс", 2000. – 750 с.

7. Культин Н. Б. Программирование в TurboPascal 7.0 и Delphi. - Санкт- петербург,1999.

8. Львов М. С., Співаковський О. В. Основи алгоритмізації та програмування. Херсон, 1997.

9. Перминов О. Н. Программирование на языке Паскаль. – М.: Радио и связь, 1988.

10. Перминов О. Н. Язык программирования Pascal. – М.: Радио и свіязь,1989.

11. Турбо Паскаль 7.0 Издание 10-е стереотипное. – Санкт-Петербург: "Печатный Двор", 1999.

12. Фаронов В. В. TurboPascal 7.0 . Начальный курс. – М.: "Нолидж", 2000.

13. TurboPascal – Издательская група К.: ВНV, 2000.