06
/ \
42
/ \ / \
9418
Характерно, що такий метод просіювання залишає незмінними умови (1), які визначають піраміду.
Р. Флойд запропонував певний "лаконічний" алгоритм побудови піраміди "на тому ж місці". Вважається, що деяка частина елементів масиву a m , a 2 , ..., a N (m=Ndiv2) вже утворює піраміду - нижній шар відповідного бінарного дерева, для них ніякої впорядкованості не вимагається. Тепер піраміда розширюється вліво; кожен раз добавляється і просіюваннями ставитться у відповідну позицію новий елемент. Ці дії реалізуються проседурою Sift :
Procedure Sift(L, R : integer);
Var
i, j : integer; x : basetype;
Begin
i:=L; j:=2*L; x:=a[L];
if (j<R) and (a[j+1]<a[j]) then j:=j+1;
while (j<=R) and (a[j]<x) do
begin
a[i]:=a[j]; a[j]:=x; i:=j; j:=2*j;
if (j<R) and (a[j+1]<a[j]) then j:=j+1
end
End;
Такимчином, процесформуванняпірамідиізNелементівa 1 , ..., a N "натомужмісці" єповторюванимвиконаннямпроцедури Sift призмініпараметраL=Ndiv2, ..., 1 :
L:=N div 2 +1;
while L>1 do
begin
L:=L-1;
Sift(L, N)
end;
Для ілюстації алгоритму розглянемо попередній варіант масиву :
44 |
44 |
44 |
44 | 42
06
Тут жирним шрифтом виділені добавлювані до піраміди елементи; підкреслені - елементи, з якими проводився обмін.
Для того, щоб отримати не тільки часткове, а і повне впорядкування серед елементів послідовності, потрібно виконати N зсувних етапів. Після кожного проходу на вершину дерева виштовхуватиметься черговий найменший ключ. Знову виникає питання : де зберігати "спливаючі" верхні елементи і чи можна проводити перестановки "на тому ж місці"? Це легко реалізувати, якщо кожен раз брати останню компоненту піраміди - це буде просіюваний ключ x, ховати верхній елемент з попереднього етапу в звільнене позицію, а x зсувати на відповідне місце. Зрозуміло, що після кожного етапу розглядувана піраміда буде скорочуватися на один елемент справа. Таким чином, впорядкування масиву буде здійснено за N-1 прохід :
06 42 12 55 94 18 44 67обмін 67 і 06
67 42 12 55 94 18 44 | 06просіювання 67
12 42 18 55 94 67 44 | 06обмін 44 і 12
44 42 18 55 94 67 | 12 06просіювання 44
18 42 44 55 94 67 | 12 06обмін 67 і 18
67 42 44 55 94 | 18 12 06просіювання 67
42 55 44 67 94 | 18 12 06обмін 94 і 42
94 55 44 67 | 42 18 12 06просіювання 94
44 55 94 67 | 42 18 12 06обмін 67 і 44
67 55 94 | 44 42 18 12 06просіювання 67
55 67 94 | 44 42 18 12 06обмін 94 і 55
94 67 | 55 44 42 18 12 06просіювання 94
67 94 | 55 44 42 18 12 06обмін 94 і 67
94 | 67 55 44 42 18 12 06просіювання 94
94 | 67 55 44 42 18 12 06
Тут жирним шрифтом виділені просіювані по піраміді елементи; підкреслені - елементи, між якими проводився обмін.
Процес сортування описується за допомогою процедури Sift таким чином:
R:=N;
while R>1 do
begin
x:=a[1]; a[1]:=a[R]; a[R]:=x;
R:=R-1;
Sift(1, R)
end;
Як видно з прикладу, отриманий порядок ключів фактично є зворотнім. Це легко виправити, помінявши напрямок відношення порівняння в процедурі Sift на протилежний. Остаточно процедура сортування масиву методом Heap Sort матиме вигляд :
Procedure Heap_Sort;
Var
L, R : integer; x : basetype;
Procedure Sift(L, R : integer);
Var
i, j : integer; x : basetype;
Begin
i:=L; j:=2*L; x:=a[L];
if (j<R) and (a[j]<a[j+1]) then j:=j+1;
while (j<=R) and (x<a[j]) do
begin
a[i]:=a[j]; a[j]:=x; i:=j; j:=2*j;
if (j<R) and (a[j]<a[j+1]) then j:=j+1
end
End;
Begin
L:=N div 2 +1; R:=N;
while L>1 do
begin L:=L-1; Sift(L, N) end;
while R>1 do
begin
x:=a[1]; a[1]:=a[R]; a[R]:=x;
R:=R-1;
Sift(1, R)
end
End;
Аналізалгоритму Heap Sort.Яквжеранішевідмічалося, складністьалгоритмупоопераціяхпорівнянняєвеличиноюпорядкуO(N*log(N)+N). Кількість переміщень елементів суттєво залежить від стартового розміщення ключів в послідовності.
Однак при початково-впорядкованому масиві не слід чекати максимальної ефективності. Адже об’єм перестановок в цьому випадку є досить великим під час просіювання "важких" елементів після побудови піраміди. Фактично на кожному етапі такого просіювання виконується log(K) перестановок плюс ще N-1 обмін перед просіюванням, де K - кількість елементів в піраміді, в якій проводиться просіювання. Таким чином, в цьому випадку
.Тому можна вважати, що розглядуваний метод як і по порівняннях так і по перестановках має ефективність порядку O(N*log(N)+N).
2.5 Порівняльна характеристика швидкодії деяких швидких алгоритмів сортування
Щоб порівняти швидкодію певних алгоритмів сортування, зокрема Quick_Sort, Heap_Sort, Shell_Sort, ми створили одновимірний масив із елементів n=50000, типу integer. При цьому розглядалися різні варіанти масиву А(n). А саме, коли вихідний масив А(n) вже є відсортований за зростанням (за спаданням), коли всі члени масиву А(n) рівні, а також, коли елементи масиву генеруються випадковим чином. За отриманими результатами ми подували таблицю, яка дає змогу проаналізувати дані, і виявити кращі алгоритми сортування у різних випадках.
№ | Алгоритм сортування | Сортування відсортованого масиву по зростанню (мс) | Сортування по зростанню відсортованого масиву по спаданню (мс) | Сортування масиву, всі елементи однакові (мс) | Сортування масиву генерованого випадковим чином (мс) |
1 | Quick_Sort | 17000 | 11000 | 14 | 25 |
2 | Heap_Sort | 40 | 40 | 8 | 55 |
3 | Shell_Sort | 40 | 50 | 46 | 77 |
Висновки
Отже, ми розглянули як працюють швидкі алгоритми сортування іь спробували визначити їх складність.
Застосування того чи іншого алгоритму сортування для вирішення конкретної задачі є досить складною проблемою, вирішення якої потребує не лише досконалого володіння саме цим алгоритмом, але й всебічного розглядання того чи іншого алгоритму, тобто визначення усіх його переваг і недоліків.
Звичайно, необхідність застосування саме швидких алгоритмів сортування очевидна. Адже прості алгоритми сортування не дають бажаної ефективності в роботі програми. Але завжди треба пам’ятати й про те, що кожний швидкий алгоритм сортування поряд із своїми перевагами може містити і деякі недоліки.
Так, алгоритм сортування деревом, хоча й працює однаково на всіх входах (так, що його складність в гіршому випадку співпадає зі складністю в середньому), але цей алгоритм має і досить суттєвий недолік: для нього потрібна додаткова пам’ять розміром 2n-1.
Розглядаючи такий швидкий алгоритм сортування, як пірамідальне сортування, можна зазначити, що цей алгоритм ефективніший ніж попередній, адже він сортує "на місці" , тобто він не потребує додаткових масивів. Крім того, цей алгоритм (" з точністю до мультиплікативної константи" (4,74)) оптимальний: його складність співпадає з нижньою оцінкою задачі, тобто за критеріями C(n) та M(n) він має складність O(n log2 n), але містить складний елемент в умові. Тобто, в умові A[left] має бути строго менше ніж x , а A[right] - строго більше за x. Якщо ж замість "строго більше" та "строго менше" поставити знаки, що позначають "більше, або дорівнює" та "менше, або дорівнює", то індекси left і right пробіжать увесь масив і побіжать далі. Вийти з цієї ситуації можна було б шляхом ускладнення умов продовження перегляду, але це б погіршило ефективність програми.
В нашій роботі ми розглянули деякі швидкі алгоритми сортування та їх реалізацію мовою Pascal, виконуючи курсову роботу ми реалізували програмно не лише використання швидких методів сортування, а і прямих, дослідили не лише переваги таких алгоритмів, ефективність їх використання, але й визначили деякі недоліки окремих алгоритмів, що заважають вживати їх для вирішення першої ліпшої задачі сортування. Програма, в якій міститься реалізація та демонстрація наявних прямих методів сортування називається Prjami.pas, а швидкі - Shvud.pas.
Отже, головною задачею, яку має вирішити людина, яка повинна розв’язати задачу сортування – це визначення як позитивних, так і усіх негативних характеристик різних алгоритмів сортування, передбачення кінцевого результату. До того ж , треба враховувати головне – чи , можливо, цю задачу задовольнить один з класичних простих алгоритмів сортування.
Література
1. Абрамов С. А., Зима Е. В. Начала программирования на языке Pascal. - М.: Наука, 1987.
2. Абрамов В. Г. Введение в язык Pascal: Учебное пособие для студентов вузов по специальности Прикладная математика. – М.: Наука, 1988.
3. Власик А.П. Практикум з програмування в середовищі TurboPascal.Ч 1.- Рівне: НУВГП, 2005. – 179 с.
4. Джонс Ж., Харроу К. Решение задач в системе Турбо-Паскаль/ Перевод с английского Улановой, Широкого. – М.: Финансы и статистика, 1991.
5. Зуев Е. А. Язык программирования Турбо Паскаль 6.0, 7.0. – М.: Радио и связь, 1993.
6. Кнут Д.Э. Искуство програмирования, том 3. Поиск и сортировка, 3-е изд.: Пер. с англ.: Уч. Пос. – М.:Издательский дом "Вильямс", 2000. – 750 с.
7. Культин Н. Б. Программирование в TurboPascal 7.0 и Delphi. - Санкт- петербург,1999.
8. Львов М. С., Співаковський О. В. Основи алгоритмізації та програмування. Херсон, 1997.
9. Перминов О. Н. Программирование на языке Паскаль. – М.: Радио и связь, 1988.
10. Перминов О. Н. Язык программирования Pascal. – М.: Радио и свіязь,1989.
11. Турбо Паскаль 7.0 Издание 10-е стереотипное. – Санкт-Петербург: "Печатный Двор", 1999.
12. Фаронов В. В. TurboPascal 7.0 . Начальный курс. – М.: "Нолидж", 2000.
13. TurboPascal – Издательская група К.: ВНV, 2000.