Смекни!
smekni.com

Порядок моделирования входного сигнала (стр. 1 из 2)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ДОНБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра АУТПТЭК

КУРСОВАЯ РАБОТА

МОДЕЛИРОВАНИЕ ДИНАМИЧЕСКИХ СИСТЕМ В SIMULINK

По курсу “Компьютерная графика”

Алчевск, 2007


Содержание

Введение

1 Моделирование входных сигналов (моделирование объекта А)

1.1 Общие принципы представления сигналов математическими моделями

1.2 Моделирование сигнала заданного вида

2 Моделирование объекта Б

3 Моделирование объекта В

4 Моделирование системы

5 Анализ результатов моделирования

Выводы

Перечень ссылок


Введение

Моделирование различных систем, объектов, процессов, явлений природы и т.д. имеет важное значение в науке и технике. Благодаря моделированию существенно облегчается и удешевляется исследование физических, химических и других природных явлений, технических объектов, создание образцов новой техники. Моделированием называется создание моделей реальных объектов и их экспериментальные исследования. В свою очередь модель – это, как правило, упрощенное отражение реального объекта, несущее те его качества, которые подвергаются исследованию (моделированию).

Большое значение имеют, так же, математические модели. Они позволяют производить моделирование реальных объектов и систем с использованием многочисленных математических методов, оперируя со свойствами объектов, выраженными в виде различных математических зависимостей и соотношений. Математические модели той или иной степени сложности, как правило, идеализированы и отражают только исследуемые характеристики реальных объектов.

С математическими моделями тесно связаны компьютерные модели, которые в зависимости от программы в которой производится моделирование, используют те или иные математические характеристики реальных объектов. В настоящее время в связи со значительным прогрессом в области компьютерной техники компьютерное моделирование приобрело большое значение в науке и технике. На сегодняшний день существует значительное количество специализированных пакетов, таких как MatLab, MathCad, Math, Mathematica, Maple и др., которые дают широкие возможности для компьютерного моделирования различных процессов и систем.

Целью данной курсовой работы является изучение принципов решения различных технических задач с использованием компьютерной техники и приобретение практических навыков моделирования процессов и объектов.

В результате выполнения курсовой работы необходимо изучить принципы построения моделей в программе Simulink, освоить методику моделирования в ней и расширить знания и навыки при решении математических задач (к которым сводится большинство практических задач науки и техники) в пакете MatLab в целом. Необходимо, также, научиться строить графические зависимости различных функций, работать с табличными данными, конвертировать таблицы и графики в текстовый редактор Word и оформлять текстовые документы, включающие в себя формулы, таблицы, графические объекты.


1. Моделирование входного сигнала

1.1 Общие принципы представления сигналов математическими моделями

Входной сигнал может задаваться различными математическими моделями: динамическим представлением, геометрическим, спектральным, энергетическим. Динамическое представление произвольного сигнала с использованием функции Хевисайда:


(1.1)

При геометрическом представлении вводится понятие координатного базиса: если совокупность векторов (e1, e2, еЗ,...) является линейно независимой, то она образует координатный базис в линейном пространстве. Тогда сигнал s(t) можно представить в виде


(1.2)

где числа (c1, c2, сЗ,...) являются проекциями сигнала s(t) относительно выбранного базиса.

При спектральном представлении сигнал s(t) и его спектральная плотность S(ω) взаимно-однозначно связаны прямым и обратным преобразованиями Фурье:


(1.3)


(1.4)


1.2 Моделирование сигнала заданного вида

Необходимо промоделировать сигнал, представляющий собой

произведение двух функций: X=X4*X16; X(t)=X4*X16

Сигнал X4 задан функцией вида:

(1.5)

где A = 40, T=4ms,

Для перехода к циклической частота воспользуемся формулой:

;
; (1.6)

рад/с

Сигнал X16 задан функцией вида:

(1.7)

где A = 75, T=17ms,

Для перехода к циклической частоте воспользуемся формулой (1.6):

;

рад/с

После преобразований составим структурную схему в Simulink для моделирования заданных сигналов, а так же для моделирования результирующего сигнала. Она приведена на рисунке 1.1.

Рисунок 1.1– Структурная схема для моделирования сигнала 1, 2 и результирующего сигнала


2 Моделирование объекта Б

Объект Б задан дифференциальным уравнением:

2.88y///+5.76 y// +5.76 y/ +2.88y = 9.23x(2.1)

Преобразуем дифференциальное уравнение (2.1) к машинному виду

2.88p3y(p)+5.76 p2y(p) +5.76 py(p) +2.88y(p) = 9.23x(p) (2.2)

y(p)(2.88p3+5.76 p2 +5.76 p +2.88) = 9.23x(p) (2.3)

Так как правая часть уравнения (2.1) не содержит производной от входного сигнала, решим его общим методом. Запишем его в форме Коши:

; (2.4)

(2.5)

Полученное уравнение позволяет осуществить построение двух структурных схем для моделирования объекта, заданного уравнением (2.1). Структурные схемы приведены на рисунке 2.1 и 2.2

Рисунок 2.1 – Структурная схема модели объекта Б (с использованием блока TransferFcn)

Рисунок 2.2 – Структурная схема модели объекта Б (с использованием блоков Integrator)

Для оценки параметров объекта Б строится переходная характеристика, которая является реакцией исследуемой системы на функцию включения (функцию Хевисайда). Графики переходных характеристик приведены на рисунках 2.3 и 2.4 (с использованием блоков TransferFcnи Integratorсоответственно)

Рисунок 2.3 – График структурной схемы модели объекта Б (с использованием блока TransferFcn)

Рисунок 2.4 – График структурной схемы модели объекта Б (с использованием блоков Integrator)

Как и следовало ожидать график, построенный с помощью блока TransferFcn и график, построенный с помощью блоков Integrator идентичны.


3 Моделирование объекта В

Объект В задан структурной схемой представленной на рисунке 3.1:

Х(Р)
У(Р)

Рисунок 3.1 – Структурная схема объекта В

W1э = W4*W10 (3.1)

W1э = W4(p)*W10(p);

(3.2)

Элементы схемы соединены последовательно:

W4 + W10 =

*
(3.3)

Параметры объекта:

T1 = 0.1c; T2 = 1.1;T3 = 0.9c.

Для оценки параметров объекта В строится переходная характеристика, которая является реакцией исследуемой системы на функцию включения (функцию Хевисайда). Структурная схема модели объекта В приведена на рисунке 3.2 а его график переходной характеристики приведен на рисунке 3.3.