Графика. Как известно каждому пользователю компьютера, любое графическое изображение состоит из отдельных точек, называемых пикселями. Отсюда становится понятным, что сохранить изображение фактически означает сохранить цвета его пикселей. Если принять конечное (ограниченное) число цветов, то информация немедленно становится дискретной и решение задачи сохранения графики становится похожей на только что рассмотренную задачу сохранения текста. Нужно каким-либо образом пронумеровать все цвета (создать своеобразный "алфавит цветов"), после чего достаточно просто сохранять номера цветов. В отличие от алфавита символов, который является стандартным, с цветами это не совсем так. Например, в фотографии летнего леса много оттенков зеленого цвета, а для кадра с облаками характерны белые и голубые тона. Отсюда следует, что набор используемых цветов (часто его называют палитрой) для этих изображений будет абсолютно разным. Поэтому некоторые графические форматы сохраняют палитру вместе с изображением, что позволяет существенно уменьшить количество цветов и, следовательно, размер файла.
Хочется подчеркнуть еще один момент. Для того, чтобы естественное изображение (например, рисунок художника на холсте) с непрерывным распределением цветов стало доступным компьютеру узором пикселей, необходимо использовать какое-либо специальное устройство, которое способно такое преобразование осуществить. Всем, конечно, известны примеры таких устройств: речь идет о сканере или цифровой камере. Однако не все задумываются над тем, что все эти устройства производят процесс дискретизации графического изображения, т.е. аналого-цифровое преобразование.
Как и для символов, помимо описанного выше "поточечного" (растрового) хранения изображения, существует еще и векторный метод. Для него сохраняется не полная матрица пикселей, а программа его рисования. Кодирование этой программы существенным образом зависит от программного обеспечения. По своим принципам оно гораздо ближе к кодированию программ, чем данных. Подчеркнем, что векторные изображения, как правило, создаются именно на компьютере, а задача векторизации естественного изображения очень сложна и дает не слишком хорошие результаты.
Звук. Звуковая информация также является величиной непрерывной, и, следовательно, для ввода в ЭВМ нуждается в дискретизации. Причем дискретизация должна производится как по времени, так и по величине интенсивности звука. Первый процесс означает, что замеры интенсивности должны производится не непрерывно, а через определенные промежутки времени, а второй – что интенсивность звука, которая в природе может принимать какие угодно значения, должна быть "подтянута" ("округлена") к ближайшему из стандартного набора фиксированных значений. При такой процедуре мы снова получаем последовательность целых чисел, которые и сохраняются в памяти ЭВМ. Таким образом, и в случае звука информацию удается описать определенным образом сформированной последовательностью чисел, что автоматически решает проблему кодирования.
Итак, рассмотрев представление различных видов информации в ЭВМ, мы можем сделать следующие выводы.
С точки зрения "готовности" к сохранению в память компьютера, информация делится на две категории – дискретная и непрерывная. Компьютер способен хранить и обрабатывать только первую, поэтому вторую предварительно необходимо каким-то способом преобразовать. Строго говоря, информация при дискретизации искажается, поэтому к качеству этого процесса предъявляются высокие требования.
Не нуждаются в дискретизации целые числа и символы, а вещественные числа, графическая и звуковая информация для ввода в компьютер требуют определенных процедурах ввода, которые преобразуют эти виды информации в дискретную форму.
Информация любого вида хранится в компьютере в двоичном виде.
Процесс кодирования любого вида информации фактически представляет собой его преобразование тем или иным способом в числовую форму.
В памяти машины не существует принципиального различия между закодированной информацией различных типов. Над всеми видами данных, включая дополнительно и саму программу, процессор способен производить арифметические, логические и прочие операции, которые содержатся в системе его команд.
1. Касаткин В.Н. Информация, алгоритмы, ЭВМ. М.: Просвещение, 1991, 192 с.
2. Математический энциклопедический словарь. / Гл. ред. Ю.В. Прохоров. М.: Сов. энциклопедия, 1988, 847 с.
3. Еремин Е.А. Как работает современный компьютер. Пермь: Изд.-во ПРИПИТ, 1997, 176 с. (необходимая часть книги доступна в Интернет по адресу
http://inf.1september.ru/eremin/emc/theory/info/default.htm)
4. Информационная культура: Кодирование информации. Информационные модели. 9-10 классы. М.: Дрофа, 2000, 208 с.