Смекни!
smekni.com

Представление сигналов в базисе несинусоидальных ортогональных функций (стр. 1 из 2)

НАЦИОНАЛЬНИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УКРАИНЫ

“КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ”

ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра физико–технических средств защиты информации

Лабораторная работа

по предметуОбработка широкополосных сигналов

Представление сигналов в базисе несинусоидальных ортогональных функций

Выполнил студент гр. ФЕ-21

Коваленко А.С.

Киев 2008


Введение

Представление сигналов в базисе несинусоидальных ортогональных функций. Обобщенный ряд Фурье. Функции Радемахера. Представление сигнала с конечной энергией в базисе функций Хаара.

Цель работы: Изучение особенностей кусочно-постоянных ортогональных функций Радемахера и Хаара. Получение практических навыков расчета спектров сложных сигналов, используя преобразование Хаара.


Теоретические сведения

Обобщенный ряд Фурье

Обобщенный ряд Фурье сигнала

в выбранном базисе
для сигнала с конечной энергией

может быть представлен в виде ряда

,

где

– коэффициент разложения, определяющий спектр сигнала;
– система ортонормированных вещественных функций (базис), причем для произвольных функций, ортонормированных на интервале
, можно записать

Коэффициенты разложения

определяются следующим образом

.

Для минимизации времени вычислений необходимо выбирать систему базисных функций по возможности более согласованную по форме с исследуемым сигналом. Причем необходимо также учитывать возможность более простой аппаратной или программной реализации базиса. Для импульсных сигналов представляет интерес разложение

в базисах функций Хаара, Уолша и др.

Дискретное преобразование Фурье (ДПФ)

Спектральная плотность

дискретного сигнала
определяется выражением

, (1.1)

где n – номер дискретного отсчета непрерывной функции;

- период дискретизации непрерывной функции x(t).

Согласно выражению (1.1) спектр дискретного сигнала сплошной. Но таковым он бывает только лишь при условии, что объем выборки дискретного сигнала бесконечен. В приложениях выборка отсчетов сигнала всегда конечномерна. Кроме того, по многим причинам желательно вычислять преобразование Фурье на ЭВМ. Это означает, что конечномерной является не только выборка дискретных отсчетов сигнала, но и соответствующее этой выборке число гармоник спектра дискретного сигнала.

Каждая спектральная линия состоит из амплитудной и фазовой составляющих. Следовательно, из N данных отсчетов можно получить амплитуды и фазы для N/2 дискретных частот, которые находятся в интервале от

до
, где
- частота дискретизации равная
.

Соответствующие спектральные линии повторяются в интервале от

до
. В области от
до
можно построить N линий для частот

,

где k = 0, 1, …, N –1. Если в уравнении (1.1) заменить

на
, то получим уравнение полностью дискретное как по времени, так и по частоте и поэтому удобное для вычислений на ЭВМ.

;

,

где k = 0, 1, …, N –1.

Выражение для обратного ДПФ следующее:

,

где n = 0, 1, …, N –1.

Быстрое преобразование Фурье (БПФ)

Классические формы прямого и обратного ДПФ просты и легко реализуемы на ЭВМ. Однако их практическое применение ограничивается большими объемами вычислений, которые растут в квадратичной зависимости от объема выборки

. Так, если число отсчетов временной функции
составляет N, то полный спектр
-мерной последовательности дискретных сигналов определяется посредством приблизительно
комплексных операций умножения и сложения. При достаточно больших
может оказаться, что ресурса даже высокопроизводительных ЭВМ недостаточно для вычисления спектра в реальном времени (т.е. в темпе поступления входных данных). Существуют различные способы сокращения объема вычисления при определении дискретно спектра, которые приводят к алгоритмам быстрого преобразования Фурье. Алгоритмы БПФ основаны на устранении избыточности вычислений. Покажем на примере.

Допустим, что нужно рассчитать число А

А = ac + ad + bc + bd

В записанном виде расчет содержит четыре операции умножения и три сложения. Если число А нужно считать много раз для разных множеств данных, то его представляют в эквивалентной форме:

А = (a+b) (c+d)

которая требует выполнения лишь одной операции умножения и двух операций сложения.

Основная идея БПФ заключается в разделении исходной

- точечной последовательности входных сигналов на две более короткие последовательности, ДПФ которых можно скомбинировать таким образом, чтобы получилось ДПФ исходной
- точечной последовательности. Так, например, если
– четное, а исходная
- точечная последовательность разбита на две
- точечные последовательности, то для вычисления искомого
- точечного ДПФ потребуется
комплексных операций умножения, т.е. вдвое меньше по сравнению с прямым вычислением ДПФ. Здесь множитель
равен числу умножений, необходимых для определения
- точечного ДПФ, а множитель 2 соответствует двум ДПФ, которые должны быть вычислены. Эту операцию можно повторить, вычисляя вместо
- точечного ДПФ две
точечные ДПФ (предполагая, что
– четное) и сокращая тем самым объем вычислений еще в два раза. Выигрыш в два раза является приблизительным, поскольку не учитывается, каким образом из ДПФ меньшего размера образуется искомое
- точечное ДПФ.

Функции Радемахера и их представление

Функции Радемахера составляют неполную систему ортонормированных функций, что ограничивает их применение. Но их широкое использование обусловлено тем, что на их основе можно получить полные функций, например, Хаара и Уолша. Непрерывная Функция Радемахера с индексом m, которая обозначается как rad(m,x), имеет вид последовательности прямоугольных импульсов, содержит

периодов на полуоткрытом интервале [0;1) и принимает значения +1 или –1. Исключением является rad (0,x), которая имеет вид единичного импульса. Функции Радемахера периодические с периодом 1, т.е. rad(m,x) = rad(m,x+1). Кроме того, они периодические и на более коротких интервалах:
,
,
Их можно получить с помощью рекуррентного соотношения:
,