Смекни!
smekni.com

Приближенное вычисление значений определенного интеграла (стр. 2 из 2)

st:string;

begin

k:=100;

xh:=(xk-xn)/100;

ymax:=f(xn);

dx:=(xk-xn)/100;

for i:=1 to 100 do

begin x:=xn+dx*i;

y:=f(x);

if y>ymax then ymax:=y;

end;

ymin:=0;

ymax:=round(ymax);

nd:=detect;

initgraph (nd, nr, 'c:\tp7\bgi');

bord1:=60; kx:=6;

bord2:=30; ky:=8;

bord3:=30;

bord4:=80;

xb:=0; yb:=0; xm:=getmaxx; ym:=getmaxy;

xl:=xb+bord1;

xp:=xm-bord2;

yv:=yb+bord3;

yn:=ym-bord4;

dxp:=(xp-xl) div kx;

dyp:=(yn-yv) div ky;

dx:=(xk-xn)/kx;

dy:=(ymax-ymin)/ky;

xl:=xp-dxp*kx;

yn:=yv+dyp*ky;

mx:=(xp-xl)/(xk-xn);

my:=(yn-yv)/(ymax-ymin);

setfillstyle (1,15);

bar (xb, yb, xm, ym);

setcolor(0);

setlinestyle (0,0,1);

bar (xl, yv, xp, yn);

rectangle (xl, yv, xp, yn);

settextjustify (0,2);

settextstyle (2,1,4);

setcolor(9);

for i:=0 to kx do begin

xt:=xl+dxp*i;

str (xn+dx*i:6:3, st);

line (xt, yn‑3, xt, yn+3);

outtextxy (xt+4, yn+8, st);

end;

settextstyle (0,0,1);

for i:=0 to ky do begin

yt:=yv+dyp*i;

str (ymax-dy*i:6:3, st);

line (xl‑3, yt, xl+3, yt);

outtextxy (xl‑56, yt‑4, st);

end;

outtextxy (xl+100, bord3 div 2,'y=19.44*exp (0.224*x)');

setcolor(12);

if xn*xk<0 then begin

xt:=xl-trunc (xn*mx);

line (xt, yv, xt, yn);

end;

if ymax*ymin<0 then begin

yt:=yv+trunc (ymax*my);

line (xl, yt, xp, yt);

end;

xh:=(xk-xn)/5;

for i:=0 to 5 do begin

setcolor(3);

x:=xn+xh*i;

y:=f(x);

xt:=xl+trunc((x-xn)*mx);

yt:=yv+trunc((ymax-y)*my);

circle (xt, yt, 3);

if i>0 then

line (xt, yt, xt1, yt1);

setcolor(5);

rectangle (xt1, yt1, xt, yn);

xt1:=xt;

yt1:=yt;

end;

repeat until keypressed;

closegraph;

end;

function pr:real;

var s, x:real;

begin

s:=0;

x:=a;

for i:=1 to n do

begin

s:=s+abs (f(x))*h;

x:=x+h;

end;

pr:=s;

end;

function tr:real;

var s, x:real;

begin

s:=0;

x:=a;

for i:=1 to n do

begin

s:=s+(f(x)+f (x+h))/2*h;

x:=x+h;

end;

tr:=s;

end;

function ch:real;

var s, dp, kf, a1, b1:real;

begin

s:=0;

kf:=sqrt (1/3);

for i:=2 to n+1 do

begin

a1:=a+h*(i‑2);

b1:=a1+h;

s:=s+((b1‑a1)/2)*(f((a1+b1)/2‑kf*((b1‑a1)/2))+f((a1+b1)/2+kf*((b1‑a1)/2)));

end;

ch:=s;

end;

function si:real;

var s, x, f1, f2:real;

begin

s:=0;

x:=a;

i:=1;

f1:=0;

repeat

f1:=f1+f (a+h*i);

i:=i+2;

until i>=n;

i:=2;

f2:=0;

repeat

f2:=f2+f (a+h*i);

i:=i+2;

until i>=n;

s:=h/3*(f(a)+f (b-h)+(4*f1)+(2*f2));

si:=s;

end;

begin

assign (lf, 'otchet.txt');

rewrite(lf);

clrscr;

write ('Введите значение левого предела интегрирования: '); readln(a);

write ('Введите значение правого предела интегрирования: '); readln(b);

write ('Введите значение погрешности: '); readln(eps);

write ('Введите начальное значение количества разбиений: '); readln(n);

writeln;

gr (a, b);

write ('Ждите, идет обработка данных ');

m0:=0;

writeln (lf, ' КУРСОВАЯ РАБОТА');

writeln (lf, ' ПО КУРСУ ИНФОРМАТИКА');

writeln (lf, ' «ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ ЗНАЧЕНИЙ');

writeln (lf, ' ОПРЕДЕЛЕННОГО ИНТЕГРАЛА» ');

writeln (lf, ' Выполнил: студент гр. ');

writeln (lf, ' Вариант 22 y=19.44*exp (0.224*x)');

writeln (lf, ' Xn=', a:5:3,' Xk=', b:5:3,' Eps=', eps:5:3);

writeln(lf);

writeln (lf, ' РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ');

repeat

h:=abs (b-a)/n;

m1:=pr;

m2:=tr;

m3:=si;

m4:=ch;

seps:=abs (m1‑m0);

writeln (lf, ' │', n:7,' │', m1:11:8,'│', m2:11:8,'│', m3:11:8,'│', m4:11:8,'│', seps:11:8,'│');

m0:=m1;

n:=n+200;

until (seps<=eps);

clrscr;

reset(lf);

while not eof(lf) do

begin

readln (lf, st);

writeln(st);

end;

{write ('Нажмите <Enter> для выхода из программы');

repeat until keypressed;}

close(lf);

end.


Список используемой литературы

1. Бахвалов Н.С. «Численные методы». М.: Наука, 1987 – 598 с.

2. Калиткин Н.Н. «Численные методы». М.: Наука, 1988 – 512 с.

3. Крылов В.И. «Вычислительные методы». М.: Наука, 1977 – 408 с.

4. Нечаев В.И., Нечаева О.А., Почуева Л.Н. «Численные методы». Тула, 1999.