Смекни!
smekni.com

Приближенное вычисление значений определенного интеграла (стр. 1 из 2)

Федеральное агентство по образованию РФ

Тульский государственный университет

Кафедра АОТ и ОС

КУРСОВАЯ РАБОТА

по курсу информатика

"ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ ЗНАЧЕНИЙ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА"

Тула, 2007


Содержание

Введение

Метод средних прямоугольников

Метод трапеций

Метод Ньютона-Котеса

Метод Чебышева

Блок-схема основной программы

Блок-схема процедуры: метод трапеций

Блок-схема процедуры: метод Ньютона-Котеса

Блок-схема процедуры: метод Чебышева

Текст программы

Список используемой литературы


Введение

На практике редко удается вычислить точно определенный интеграл. Например, в элементарных функциях не вычисляется функция Лапласа

широко используемая в теории вероятностей для вычисления вероятностей, связанных с нормально распределенными случайными величинами.

Задача численного интегрирования состоит в нахождении приближенного значения интеграла:

(1)

от непрерывной на отрезке [a, b] функции

.

Численные методы интегрирования применяются в случаях, когда не удается найти аналитическое выражение первообразной для функции

либо если функция
задана таблично. Формулы численного интегрирования называются квадратурными формулами.

Пример: Приближенное неравенство

(2)

где qj – некоторые числа, xj – некоторые точки отрезка [a, b], называется квадратурной формулой, определяемой весамиqj и узламиxj.

Говорят, что квадратурная формула точна для многочленов степени m, если при замене

на произвольный алгебраический многочлен степени m приближенное равенство (2) становится точным.

Рассмотрим некоторые широко используемые примеры приближенного вычисления определенных интегралов, квадратурные формулы.


Метод средних прямоугольников

Вычисление определенного интеграла геометрически означает вычисление площади фигуры, ограниченной кривой

, прямыми х=а и х=b и осью абсцисс. Приближенно эта площадь равна сумме площадей прямоугольников.

Обозначим

, где

n – количество шагов.

Формула левых прямоугольников:

Формула правых прямоугольников:

Более точной является формула средних прямоугольников:


Метод трапеций

Площадь под кривой заменяется суммой площадей трапеций:

или

Нетрудно убедиться, что

Поскольку точность вычислений по приведенным формулам зависит от числа разбиений n исходного отрезка [a; b], то вычислительный процесс целесообразно строить итерационным методом, увеличивая n до тех пор, пока не будет выполнено условие

<

где

– значения интеграла на
шаге, а
– точность вычислений.


Метод Ньютона-Котеса

Заменим подынтегральную функцию f(x) интерполяционным многочленом Лагранжа:

.

Тогда

;

(1)

Так как dx=hdq, то

Так как

, то

Окончательно получаем формулу Ньютона-Котеса:

(2)

Величины Hi называют коэффициентами Ньютона-Котеса. Они не зависят от f(x). Их можно вычислить заранее для различного числа узлов n (таблица 1).

Формула Ньютона-Котеса с n узлами точна для полиномов степени не выше n. Для получения большей точности не рекомендуется использовать формулы с большим числом узлов, а лучше разбивать отрезок на подотрезки, к каждому из которых применяется формула с одним и тем же небольшим числом узлов.

Таблица 1. Значения коэффициентов Ньютона-Котеса
H N
1 2 3 4
H0 1/2 1/6 1/8 7/90
H1 1/2 2/3 3/8 16/45
H2 - 1/6 3/8 2/15
H3 - - 1/8 16/45
H4 - - - 7/90

Интересно отметить, что из формулы (2) следуют как частные случаи: формула трапеций при n=1

;

формула Симпсона при n=2

;

правило трех восьмых при n=3

.

Формулу (2) при n>6 не применяют, так как коэффициенты Ньютона-Котеса становятся слишком большими и вычислительная погрешность резко возрастает.

Метод Чебышева

П.Л. Чебышев предложил формулу:

,

в которой коэффициенты ci фиксированы, а хi подлежат определению.

Пользуясь алгебраическими свойствами симметричных многочленов, опустив преобразования, ограничимся готовыми результатами. В таблице 2 приведены значения узлов квадратурной формулы Чебышева для некоторых значений n.

Таблица 2. Значения узлов квадратурной формулы Чебышева
Число интервалов n Номер узла i Значение узла Xi
1 12 0,2113250,788675
2 123 0,1464470,5000000,853553
3 1234 0,1026730,4062040,5937960,897327
4 12345 0,0837510,3127300,5000000,6872700,916249
5 123456 0,0668770,2887400,3666820,6333180,7122600,933123

Для любых пределов интегрирования имеем:

где
,

Значения xi берутся из таблицы при выбранном значении n. Для повышения точности можно не только увеличивать количество узлов, но и разбивать отрезок [a, b] на подотрезки, к каждому из которых применяется соответствующая формула. Не рекомендуется применять формулы с большим количеством узлов (n>=8).Доказано, что для n=8 построить квадратурную формулу Чебышева невозможно.

Блок-схема основной программы


Блок-схема процедуры: метод трапеций

Блок-схема процедуры: метод Ньютона-Котеса


Блок-схема процедуры: метод Чебышева

Текстпрограммы

program Curs;

uses crt, graph;

var i, n:integer;

t:byte;

a, b, eps, h:real;

x, sum1, sum2, seps, m0, m1, m2, m3, m4:real;

lf:text;

st:string;

function f (x:real):real;

begin

f:=19.44*exp (0.224*x);

end;

procedure gr (xn, xk:real);

var x, y, mx, my, dx, dy,

ymin, ymax, xh:real;

xb, yb, xm, ym, xl, yv, xp, yn, bord1, bord2, bord3, bord4, xt, yt, xt1, yt1, dxp, dyp, nd, nr, i, kx, ky, k:integer;