Смекни!
smekni.com

Прикладная теория информации (стр. 10 из 12)

Поэтому очень часто вводят предположение о стационарности случайного процесса, что позволяет существенно упростить математический аппарат исследования.

Случайный процесс называют стационарным в узком смысле, если выражения для плотностей вероятности не зависят от начала отсчета времени, т.е. справедливо соотношение

где U

-случайная величина, отражающая значение процесса в момент времени t = ti + τ(τ - произвольное число).

Иначе говоря, стационарность процесса предполагает его существование и статистическую однородность во всем диапазоне времени от -

до +
.

Такое предположение противоречит физическим свойствам реальных сигналов, в частности тому, что всякий реальный сигнал существует лишь в течение конечного отрезка времени. Однако аналогично установившимся детерминированным процессам случайные процессы, протекающие в установившемся режиме системы при неизменных внешних условиях на определенных отрезках времени, с известным приближением можно рассматривать как стационарные.

При решении многих технических задач идут на дальнейшее упрощение модели, рассматривая случайный процесс стационарным в широком смысле. Процесс U(t) принято называть стационарным в широком смысле, если выполняется условие постоянства математического ожидания и дисперсии, а корреляционная функция не зависит от начала отсчета времени и является функцией только одного аргумента τ = t2 - t1, т.е.

Так как условие постоянства дисперсии является частным случаем требования к корреляционной функции при τ = 0:

то выполнения соотношений (1.79) и (1.81) достаточно, чтобы рассматривать случайный процесс U(t) как стационарный.

Всякий стационарный случайный процесс является стационарным в широком смысле. В дальнейшем, если это не оговорено особо, стационарность будем рассматривать в широком смысле.

Случайные процессы, наблюдаемые в устойчиво работающих реальных системах, имеют конечное время корреляции. Поэтому для стационарных процессов, представляющих практический интерес, справедливо соотношение

Если для случайного процесса равенства (1.79), (1.81) не выдерживаются, но на интересующем нас интервале времени изменением указанных параметров можно пренебречь, его называют квазистационарным.

Среди стационарных случайных процессов многие удовлетворяют свойству эргодичности. Оно проявляется в том, что каждая реализация случайного процесса достаточной продолжительности несет практически полную информацию о свойствах всего ансамбля реализаций, что позволяет существенно упростить процедуру определения статистических характеристик, заменяя усреднение значений по ансамблю реализаций усреднением значений одной реализации за длительный интервал времени.

Следовательно, для стационарных эргодических процессов справедливы соотношения

где u(t) - конкретная реализация случайного процесса U(t).

Результаты исследования случайных процессов в их временном представлении, т.е. с использованием формул (1.83) и (1.85), лежат в основе корреляционной теории сигналов.

Для облегчения практического определения корреляционных функций в соответствии с (1.85) серийно выпускаются специальные вычислительные устройства - коррелометры (корреляторы).

§ 1.10 Спектральное представление случайных сигналов

В § 1.2 была показана эффективность представления детерминированных сигналов совокупностью элементарных базисных сигналов для облегчения анализа прохождения их через линейные системы. Аналогичный подход может быть использован и в случае сигналов, описываемых случайными процессами [21].

Рассмотрим случайный процесс U(t), имеющий математическое ожидание mu(t). Соответствующий центрированный случайный процесс

(t) характеризуется в любой момент времени t1 центрированной случайной величиной
(t1):

Центрированный случайный процесс

(t) можно, как и ранее [см. (1.1)], выразить в виде конечной или бесконечной суммы ортогональных составляющих, каждая из которых представляет собой неслучайную базисную функцию jk(t) с коэффициентом Ck, являющимся случайной величиной. В результате имеем разложение центрированного случайного процесса
(t):

Случайные величины Сk называются коэффициентами разложения. В общем случае они статистически зависимы, и эта связь задается матрицей коэффициентов корреляции

. Математические ожидания коэффициентов разложения равны нулю. Неслучайные базисные функции принято называть координатными функциями.

Для конкретной реализации коэффициенты разложения являются действительными величинами и определяются по формуле (1.7).

Предположив, что

детерминированную функцию mu(f) в (1.86) на интервале - T<t<. T также можно разложить по функциям φk(t), представив в виде

Подставляя (1.87 а) и (1.876) в (1.86) для случайного процесса U(t) с отличным от нуля средним, получим

Выражение случайного процесса в виде (1.87 в) позволяет существенно упростить его линейные преобразования, поскольку они сводятся к преобразованиям

детерминированных функций [mu(t),

jk(t)], а коэффициенты разложения, являющиеся случайными величинами, остаются неизменными.

Чтобы определить требования к координатным функциям, рассмотрим корреляционную функцию процесса

(t), заданную разложением

Так как

то

Соотношение (1.88) становится значительно проще, если коэффициенты {Ck} некоррелированы (Rkl = 0 при k

l, Rkl = 1 при k = l):

В частности, при t1 = t2 = t получим дисперсию случайного процесса U(t):

Поэтому целесообразно выбирать такие координатные функции, которые обеспечивают некоррелированность случайных величин {Сk}. Разложение (1.87), удовлетворяющее этому условию, называют каноническим разложением.

Доказано [21], что по известному каноническому разложению корреляционной функции случайного процесса можно записать каноническое разложение самого случайного процесса с теми же координатными функциями, причем дисперсии коэффициентов этого разложения будут равны дисперсиям коэффициентов разложения корреляционной функции.

Таким образом, при выбранном наборе координатных функций центрированный случайный процесс характеризуется совокупностью дисперсий коэффициентов разложения, которую можно рассматривать как обобщенный спектр случайного процесса.

В каноническом разложении (1.87) этот спектр является дискретным (линейчатым) и может содержать как конечное, так и бесконечное число членов (линий).

Однако используются и интегральные канонические разложения в форме (1.2). В этом случае мы имеем непрерывный спектр, представляемый спектральной плотностью дисперсии.

Основным препятствием к широкому практическому использованию канонических разложений случайных процессов является сложность процедуры нахождения координатных функций. Однако для ряда стационарных случайных процессов эта процедура вполне приемлема.

§ 1.11 Частотное представление стационарных случайных сигналов

Дискретные спектры. Корреляционную функцию Ru(t) (рис.1.14) стационарного случайного процесса, заданного на конечном интервале времени [-Т, Т], можно разложить в ряд Фурье (1.15), условно считая ее периодически продолжающейся с периодом 4T (при - T<. t1, t2<T, - 2Τ<τ<2Τ):

где


Учитывая, что Ru(t) является четной функцией, имеем