Смекни!
smekni.com

Прикладная теория информации (стр. 11 из 12)

Положив τ = t1 - t2, находим

что согласно (1.89) представляет собой каноническое разложение корреляционной функции. По нему, как было указано ранее, получаем каноническое разложение случайного процесса:

причем

Выражение (1.95) записано для случайного процесса с нулевой постоянной составляющей, что характерно для многих реальных сигналов. В общем случае в правую часть этого выражения необходимо добавить постоянную величину, соответствующую математическому ожиданию случайного процесса (mu). Корреляционная функция при этом не изменяется.

Очевидно, что при попарном объединении экспоненциальных составляющих с одинаковыми положительными и отрицательными индексами k каноническое разложение (1.95) приводится к тригонометрической форме.

Таким образом, стационарный случайный процесс на ограниченном интервале времени можно представить совокупностью гармонических составляющих различных частот с амплитудами, являющимися некоррелированными случайными величинами, математические ожидания которых равны нулю:

где

На спектральной диаграмме такого процесса каждой гармонике ставится в соответствие вертикальный отрезок, длина которого пропорциональна дисперсии ее амплитуды, а расположение на оси абсцисс отвечает частоте (рис.1.15).

Чтобы получить описание стационарного случайного процесса в точном смысле, т.е. справедливое для любого момента времени на бесконечном интервале -

<t<
, необходимо перейти к интегральному каноническому разложению.

Непрерывные спектры. Интегральное каноническое разложение для корреляционной функции получим из формулы (1.91) путем предельного перехода при Т

. Увеличение интервала времени, на котором наблюдается случайный процесс, сопровождается уменьшением значений дисперсий, что следует из (1.92), а также сокращением расстояния между спектральными линиями, поскольку

При достаточно большом, но конечном Т можно записать выражение для средней плотности распределения дисперсии по частоте:

S

(wk) = Dk / (Δω) = 2DkT /
(k = 0,±l, ±2,.) (1.98)

где S

(wk) - средняя плотность дисперсии на участке, прилегающем к частоте ωk.

Теперь можно преобразовать формулы (1.94) и (1.98) к виду

Переходя к пределу при Т

, получаем

где

Так как величина S

(ωk) Δω являлась не только дисперсией Dk коэффициента разложения корреляционной функции Ru(t), но и дисперсией D [Ck] коэффициента разложения случайного процесса U(t), то величина Suu(w) dw, полученная в результате предельного перехода при Т
, представляет собой дисперсию, приходящуюся на спектральные составляющие стационарного случайного процесса, занимающие бесконечно малый интервал частот (ω, ω+ dw). Функцию Suu(w), характеризующую распределение дисперсии случайного процесса по частотам, называют спектральной плотностью стационарного случайного процесса U(t).

Выражение для интегрального канонического разложения корреляционной функции Ru(t) найдем, положив в формуле (1.101) τ = t1 - t2:

Обозначив G

(w) = Сk / (
w) и повторив процедуру предельного перехода при T
для соотношения (1.95), получим каноническое разложение стационарной случайной функции U(t):

где дисперсией случайной функции G(w) dwявляется функция Suu(w) dw.

Поскольку понятие спектральной плотности стационарного случайного процесса играет большую роль при исследовании преобразования сигналов линейными системами, уточним ее свойства и физический смысл.

Основные свойства спектральной плотности. Отметим, что в формулах (1.101) и (1.102) Suu(w) определена как для положительных, так и для отрицательных частот. Перейдем к одностороннему спектру, ограничиваясь только положительными частотами. Воспользовавшись формулой Эйлера, представим соотношение (1.102) состоящим из двух слагаемых:

В силу четности функции Ru(t) второе слагаемое равно нулю, а первое можно преобразовать к виду

Из (1.105) следует, что Suu(w) является действительной и четной функцией, т.е.

Это позволяет ограничиться положительными частотами и в (1.101):

Соотношения (1 101) и (1.102), а также (1.105) и (1.107) являются парами интегрального преобразования Фурье, причем (1.105) и (1.107) для случая четной функции. Поэтому корреляционная функция и спектральная плотность подчинены закономерности: чем протяженнее кривая Suu(ω), тем уже корреляционная функция Ru(t) (тем меньше время корреляции), и наоборот.

Площадь, ограниченная непрерывной кривой Suu(w) на спектральной диаграмме, очевидно, должна равняться дисперсии Du случайного процесса U(t). Действительно, положив в формуле (1.107) τ = 0, получим

Подразумевая под случайным процессом U(t) напряжение, Du можно рассматривать как среднюю мощность, выделяемую этим напряжением на резисторе с сопротивлением в 1 Ом:

Следовательно, величина

представляет собой долю средней мощности, выделяемой составляющими спектра, относящимися к интервалу частот (ω, ω + dw).

В связи с этим спектральную плотность Suu(w) называют еще спектральной плотностью мощности, а также энергетическим спектром стационарного случайного процесса, поскольку Suu(w) имеет размерность энергии.

Спектральная плотность мощности случайного процесса является средней характеристикой множества реализаций. Ее можно получить и путем усреднения спектральной мощности реализации Ρk(ω) (1.62) по множеству реализаций.

Рассмотрим с этой целью одну реализацию u

(t) стационарного случайного процесса U(t) сначала на ограниченном интервале времени - T<t<. T. Для нее можно записать преобразование Фурье:

В соответствии с (1.63) спектральная плотность мощности этой реализации

Найдем среднее значение Ρ

(ω) по множеству реализации k. Имеем

или

Так как мы предполагаем, что случайный процесс U(t) стационарный, то

где t1 - t2 = τ.

При выполнении условия (1.114) для выражения (1.113) существует предел при T

:

что и требовалось показать.

Пример 1.7 У центрированного стационарного случайного процесса спектральная плотность постоянна. Рассмотреть особенности такого процесса.

Пусть спектральная плотность Suu(ω) ограничена определенной полосой частот (рис.1.16, а):

В соответствии с (1.107) найдем автокорреляционную функцию процесса U(t):

Вид функции Ru(t) приведен на рис.1.16,6. Значение ее при τ = 0 равно дисперсии, а следовательно, средней мощности рассматриваемого процесса: