Смекни!
smekni.com

Прикладная теория информации (стр. 6 из 12)

представить сложный детерминированный сигнал в виде суммы гармонических составляющих. Поскольку параметр ω в этом случае имеет смысл круговой частоты, результат такого преобразования называют частотной формой представления сигнала.

В силу указанных преимуществ разложение сигналов по системе гармонических базисных функций подверглось всестороннему исследованию, на основе которого была создана широко известная классическая спектральная теория сигналов.

В дальнейшем, если это не оговорено специально, спектральное представление сигналов рассматривается в рамках классической теории.

Спектры периодических сигналов. Периодических сигналов, естественно, не существует, так как любой реальный сигнал имеет начало и конец. Однако при анализе сигналов в установившемся режиме можно исходить из предположения, что они существуют бесконечно долго и принять в качестве математической модели таких сигналов периодическую функцию времени. Далее рассматривается представление таких функций, как в виде суммы экспоненциальных составляющих, так и с преобразованием их в гармонические.

Пусть функция u(t), заданная в интервале времени

и удовлетворяющая условиям Дирихле, повторяется с периодом T = 2
/
= t2-t1 на протяжении времени от -
до +
.

Условия Дирихле: на любом конечном интервале функция должна быть непрерывной или иметь конечное число точек разрыва первого рода, а также конечное число экстремальных точек. В точках разрыва функцию u(t) следует считать равной.

Если в качестве базисных выбраны экспоненциальные функции, то выражение (1.5) запишем в виде

Соотношение (1.15) представляет собой ряд Фурье в комплексной форме, содержащий экспоненциальные функции как с положительным, так и с отрицательным параметром ω (двустороннее частотное представление). Составляющие с отрицательными частотами являются следствием комплексной формы записи вещественной функции.

Функцию A(jkw1) принято называть комплексным спектром периодического сигнала u(t). Этот спектр дискретный, так как функция A(jkw1) определена на числовой оси только для целых значений k. Значение функции A(jkw1) при конкретном k называют комплексной амплитудой.

Огибающая комплексного спектра A(jw) имеет вид

Запишем комплексный спектр в форме

Модуль комплексного спектра A(kw1) называют спектром амплитуд, а функцию φ(kw1) - спектром фаз.

Если известны спектр амплитуд и спектр фаз сигнала, то в соответствии с (1.15) он восстанавливается однозначно. В практических приложениях более значимым является спектр амплитуд, а информация о фазах составляющих часто несущественна.

Поскольку A(kw1) и φ(kw1) отличны от нуля только при целых k, спектры амплитуд и фаз периодического сигнала являются дискретными.

Воспользовавшись формулой Эйлера е - jkwt = coskwt - j sinkwt, выразим комплексный спектр A(jkw1) в виде действительной и мнимой частей:

где

Спектр амплитуд

является четной функцией k, т.е.

Поскольку четность Ak и Вk, противоположна, спектр фаз

функция нечетная, т.е.

При k = 0 получаем постоянную составляющую

От двустороннего спектрального представления легко перейти к одностороннему (не имеющему отрицательных частот), объединяя комплексно-сопряженные составляющие [см. (1.14)]. В этом случае получаем ряд Фурье в тригонометрической форме. Действительно, выделив в (1.15) постоянную составляющую A0/2 и суммируя составляющие симметричных частот ω и - ω, имеем

Учитывая соотношения (1.15) и (1.16), запишем

Воспользовавшись формулой Эйлера (1.14) и обозначив φ(kw1) через φk, окончательно получим

Распространена и другая тригонометрическая форма ряда Фурье, имеющая вид

Однако она менее удобна для практического применения. Отдельные составляющие в представлениях (1.23) и (1.24) называют гармониками. Как спектр амплитуд, так и спектр фаз периодического сигнала удобно представлять наглядно спектральными диаграммами. На диаграмме спектра амплитуд каждой гармонике ставится в соответствие вертикальный отрезок, длина которого пропорциональна амплитуде, а расположение на оси абсцисс отвечает частоте этой составляющей. Аналогично на диаграмме спектра фаз обозначают значения фаз гармоник. Поскольку в результате спектры отображаются совокупностями линий, их часто называют линейчатыми.

Отметим, что дискретный (линейчатый) спектр не обязательно должен принадлежать периодическому сигналу. Спектр периодического сигнала характеризует совокупность гармоник, кратных основной частоте ωι. Линейчатые спектры, включающие гармоники некратных частот, принадлежат так называемым почти периодическим сигналам. Диаграмма спектра амплитуд периодического сигнала показана на рис.1.4 Огибающую A(t) этого спектра амплитуд можно получить, заменив kw1 в A(kw1) на ω, где ω = kω1 для k-й гармоники.

Пример 1.1 Определить спектры амплитуд и фаз периодической последовательности прямоугольных импульсов длительностью τ и амплитудой u0, следующих с частотой ω1 = 2π / Τ (рис.1.5).

Функция u(t), описывающая такую последовательность импульсов на периоде, может быть задана в виде:

В соответствии с (1.16) имеем

или

Амплитуды гармоник, включая постоянную составляющую, равную А0/2, определим из выражения

при k = О, 1, 2,...



Выбор начала отсчета времени на их величину не влияет. Огибающая спектра амплитуд определяется видом функции

При ω = 0 получаем

Характер изменения амплитуд диктуется функцией sin х / х и не зависит от частоты следования импульсов. На частотах, кратных 2π / τ, огибающая спектра равна нулю.

На рис.1.6 приведена диаграмма спектра амплитуд для случая

Τ / τ = 3 [ω1 = 2π / (3τ)]. Число составляющих в спектре бесконечно велико. Крутизна фронтов импульсов обусловлена наличием в спектре составляющих с частотами, существенно превышающими основную частоту ω1.

Опираясь на формулу (1.29) и принимая во внимание, что знаки функции sin(kw1

/ 2) на последовательности интервалов частот Δω = 2π / τ чередуются, выражение для спектра фаз запишем следующим образом:

где n - номер интервала частот

ω = 2π / τ, отсчитываемого от ω = 0.

Спектр фаз зависит от выбора начала отсчета. Если передний фронт прямоугольного импульса последовательности приходится на начало отсчета времени, то на каждом интервале Δω = 2π / τ фазы составляющих возрастают линейно. Диаграмма спектра фаз последовательности прямоугольных импульсов для этого случая (Τ / τ = 3, t1 = 0) показана на рис.1.7

Пример 1.2 Вычислить несколько первых членов ряда Фурье для периодической последовательности прямоугольных импульсов и проследить, как их гумма сходится к указанному сигналу.

Воспользуемся результатами предыдущего примера для случая широко используемой на практике периодической последовательности импульсов, у которых длительность τ равна половине периода Т. Примем также t1 = 0.

По формуле (1.32) определим постоянную составляющую, а по формулам (1.30) и (1.33) - амплитуды и фазы пяти первых гармоник. Данные расчетов сведены в табл.1.1 Четные гармоники в табл.1.1 не указаны, так как они равны нулю.

Таблица 1.1