Смекни!
smekni.com

Применение Байесовых сетей (стр. 1 из 6)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ

Применение Байесовых сетей.

ПО КУРСУ «МОДЕЛИРОВАНИЕ»

Выполнил слушатель

группы ИВТ-363

Ефанов П.А.

Проверил

Кузнецов В.В.

Содержание.

Содержание. 2

Введение. 3

Основные понятия и определения. 5

Законы теории вероятностей. 5

Законы сложения вероятностей. 6

Условные вероятности. 6

Формула Байеса. 7

Введение в байесовские сети доверия. 7

Моделирование в условиях неопределенности. 8

Экспертные системы и формальная логика. 8

Особенности вывода суждений в условиях неопределенности. 9

Определение d-разделимости. 11

Использование Байесовых сетей. 13

Вероятности прогнозируемых значений отдельных переменных. 13

Пример построения простейшей байесовской сети доверия. 13

Расчет в байесовской сети. 15

Байесовские сети доверия как одно из направлений современных экспертных систем. 16

Представление знаний с использованием байесовской сети доверия и условная независимость событий. 16

Замечание о субъективных вероятностях и ожидания. 17

Синтез сети на основе априорной информации. 18

Пример использования Байесовых сетей. 19

Медицина. 19

Космические и военные применения. 19

Компьютеры и системное программное обеспечение. 19

Обработка изображений и видео. 19

Финансы и экономика. 20

Описание прикладных программ.. 21

AUAI — Ассоциация анализа неопределенности в искусственном интеллекте. 21

NETICA.. 21

Knowledge Industries. 22

Data Digest Corporation. 22

BayesWare, Ltd. 22

HUGIN Expert 22

Выводы.. 24

Список используемой литературы. 25

Введение

Байесовы сети представляют собой графовые модели вероятностных и причинно-следственных отношений между переменными в статистическом информационном моделировании. В байесовых сетях могут органически сочетаться эмпирические частоты появления различных значений перемен­ных, субъективные оценки «ожиданий» и теоретические представления о математических вероятностях тех или иных следствий из априорной ин­формации. Это является важным практическим преимуществом и отличает байесовы сети от других методик информационного моделирования.

Наблюдаемые события редко могут быть описаны как прямые следствия строго детерминированных причин. На практике широко применяется ве­роятностное описание явлений. Обоснований тому несколько: и наличие неустранимых погрешностей в процессе экспериментирования и наблю­дений, и невозможность полного описания структурных сложностей изу­чаемой системы, и неопределенности вследствие конечности объема наблюдений.

На пути вероятностного моделирования встречаются определенные слож­ности, которые (если отвлечься от чисто теоретических проблем) можно условно разделить на две группы:

• технические (вычислительная сложность, «комбинаторные взрывы» и т.п.);

• идейные (наличие неопределенности, сложности при постановке за­дачи в терминах вероятностей, недостаточность статистического ма­териала).

Для иллюстрации одной из «идейных» сложностей рассмотрим простой пример из области вероятностного прогнозирования. Требуется оценить вероятность положительного исхода в каждой из трех ситуаций:

• Знатная леди утверждает, что она может отличить на вкус, был ли чай налит в сливки или наоборот — сливки в чай. Ей удалось это проделать 10 раз в течение бала.

• Азартный игрок утверждает, что он может предсказать, орлом или решкой выпадет монета (которую вы ему дадите). Он смог выиграть такое пари уже 10 раз за этот вечер, ни разу не проиграв!

• Эксперт в классической музыке заявляет, что он в состоянии разли­чить творения Гайдна и Моцарта лишь по одной странице партитуры. Он уверенно проделал это 10 раз в музыкальной библиотеке.

Удивительная особенность — во всех трех случаях мы формально име­ем одинаковые экспериментальные свидетельства в пользу высказанных утверждений — в каждом случае они достоверно подтверждены 10 раз. Од­нако мы с восхищением и удивлением отнесемся к способностям леди, весьма скептически воспримем заявления бравого игрока, и совершенно естественно согласимся с доводами музыкального эксперта. Наши субъ­ективные оценки вероятности этих трех ситуаций весьма отличаются. И, несмотря на то, что мы имеем дело с повторяющимися событиями, весьма непросто совместить их с классическими положениями теории вероятно­стей.

Особенно затруднительно получить формулировку, понятную вычисли­тельной машине.

Другая сторона идейных трудностей возникает при практической необ­ходимости вероятностного прогнозирования событий, к которым не вполне применимы классические представления о статистической повторяемости. Представим себе серию экспериментов с бросанием кубика, сделанного из сахара, на влажную поверхность стола. Вероятности исходов последу­ющих испытаний зависят от относительной частоты исходов предыдущих испытаний, при этом исследуемая система каждый раз необратимо изменя­ется в результате каждого эксперимента. Этим свойством обладают многие биологические и социальные системы, что делает их вероятностное моде­лирование классическими методами крайне проблематичным.

Часть из указанных проблем решается в вероятностных байесовых се­тях, которые представляют собой графовые модели причинно-следствен­ных отношений между случайными переменными. В байесовых сетях мо­гут органически сочетаться эмпирические частоты появления различных значений переменных, субъективные оценки «ожиданий» и теоретические представления о математических вероятностях тех или иных следствий из априорной информации. Это является важным практическим преиму­ществом и отличает байесовы сети от других методик информационного моделирования.

Байесовы сети широко применяются в таких областях, как медицина, стратегическое планирование, финансы и экономика.

Основные понятия и определения

Законы теории вероятностей.

Понятие вероятности ассоциируется с проведением эксперимента, результаты которого, именуемые исходами, изменяются случайным образом. Множество всех возможных исходов эксперимента называется пространством элементарных событий, а любое подмножество этого пространства – событием.

Эксперимент может быть связан также с непрерывным пространством событий.

Если в эксперименте, состоящем из n опытов, событие Е имело место m раз, то вероятность P{E} появления события Е математически определяется соотношением

Приведенное определение означает, что если эксперимент повторяется бесконечное число раз, то, искомая вероятность представляется граничным значение дроби m/n.

По определению

, где вероятность P{E} равна 0, если событие E невозможно, и 1, если оно достоверно.

Законы сложения вероятностей.

Для двух событий E и F запись E+F означает их объединение, а EF – пересечение. События E и F называются несовместными (взаимно исключающими), если они не пересекаются, т.е. наступление одного события исключает возможность реализации другого. При принятых определениях закон сложения вероятностей определяется соотношением

Первая строка системы в случае несовместности E и F, вторая - иначе.

Вероятность того, что события E и F произойдут одновременно, обозначается как P{EF}. Если эти события независимы, тогда

Условные вероятности.

Для двух события E и F условная вероятность события E при условии, что наступило событие F, обозначается как P{E|F} и определяется по формуле

Если событие E содержится в событии F (т.е. множество исходов E является подмножеством исходов F), тогда

Два события E и F являются независимыми тогда и только тогда, когда выполняется равенство P{E|F}=P{E}. В этом случае формула условной вероятности сводится к следующему

Теорема умножения, если соответствующие условные вероятности определены

Теорема умножения для большого числа событий, если соответствующие условные вероятности определены

Формула полной вероятности для группы несовместных событий Bi

Формула Байеса.

Пусть Ai – полная группа несовместных событий, тогда формула Байеса (формула перерасчета гипотез) и B некоторое событие положительной вероятности

Доказательство следует из теоремы умножения и формулы полной вероятности.

Введение в байесовские сети доверия.

Байесовские сети доверия – Bayesian Belief Network – используются в тех областях, которые характеризуются наследованной неопределённостью. Эта неопределённость может возникать вследствие: