Смекни!
smekni.com

Принцип работы маршрутизатора (стр. 2 из 4)

Многие рассматривают модуль выбора маршрута как основной модуль маршрутизатора. Выбор маршрута осуществляется с использованием классических методик. Например, в простейшем случае код переключения ищет адрес получателя в таблице маршрутизации, выбирает один из возможных следующих транзитных узлов (определенных протоколом маршрутизации), удаляет входной и добавляет выходной заголовки канального уровня, а затем посылает сообщение.

Конечно, вся эта процедура применяется только к действительным сообщениям (основные протоколы сетевого уровня имеют процедуры для квалификации сообщения). Если сообщение слишком велико по размеру для выходного интерфейса, то маршрутизатор вынужден либо фрагментировать, либо отбросить его. Если пакет содержит контрольные суммы (DECnet IV и IPv6 их не предусматривают, в отличие от большинства других протоколов), то сначала проверяется контрольная сумма. Фактически все архитектуры имеют также и счетчик транзитных узлов: маршрутизатор увеличивает его на единицу и сравнивает с предельным допустимым значением. Маршрутизатор отбрасывает недействительные сообщения и уведомляет об этом отправителя.

Некоторые протоколы, в частности IPv4, IPv6 и ISO IP, поддерживают дополнительные поля: они позволяют маршрутизатору записывать путь сообщения по сети и посылать сообщение в принудительном порядке через некоторые системы по пути следования, накапливать отметки о времени, передавать информацию об идентификации и выполнять другие функции сетевого уровня. Эти факультативные процедуры также выполняются модулем выбора маршрута.

После переключения сообщения модулем выбора маршрута распорядитель сообщений определяет момент отправки сообщения. Планирование отправки сообщений - и самая простая, и самая сложная функция уровня коммутации. Маршрутизаторы по большей части либо добавляют сообщение в очередь FIFO (англ. сокр. "первым пришел, первым ушел") ожидающего отправки трафика, либо, если очередь полна, просто отбрасывают их. Такой простой алгоритм довольно эффективен, но опыт управления сетями и недавние исследования показывают, что он далеко не оптимален.

В маршрутизаторе, реализующем архитектуру с интеграцией услуг IETF, алгоритмы обслуживания очередей сортируют трафик в таком порядке, чтобы данные гарантии были выполнены. Часто маршрутизаторы, не поддерживающие QoS, реализуют подобные алгоритмы в целях управления трафиком.

FIFO - первым пришел, первым ушел

Стандартные реализации очереди FIFO первыми отправляют наиболее раннее из полученных сообщений и отбрасывают все последующие, если очередь уже полна. Недавние исследования показывают, что удаление сообщений, по крайней мере для TCP/IP, имеет серьезные побочные эффекты. Например, когда сообщение потеряно, приложение-отправитель может рассматривать это как сигнал о том, что оно посылает пакеты слишком быстро. TCP реагирует на такой сигнал замедлением отправки сообщений. Но когда очередь полна, то часто несколько сообщений отбрасываются друг за другом - в результате целый ряд приложений решает замедлить передачу. После этого приложения зондируют сеть для определения ее загруженности и буквально через несколько секунд возобновляют передачу с прежним темпом, что опять приводит к перегрузке.

Случайное раннее обнаружение (Random Early Detection, RED) представляет альтернативу очередям FIFO. Оно позволяет смягчить эффект от потери трафика даже при очень больших нагрузках, так что приложения не синхронизированы друг с другом, как это имело место в предыдущем случае. Такая очередь по-прежнему использует принцип FIFO, но, вместо того чтобы отбрасывать сообщения из конца очереди, RED отбрасывает трафик статистически, когда средняя длина очереди за данный промежуток времени превосходит некоторое значение. Таким образом, заполнение очереди оптимизировано для обеспечения большей устойчивости алгоритма. Этот процесс был придуман специально для TCP, но те, кто его изобрел, считают, что он применим к любому трафику, когда сеть не гарантирует доставки.

Очередь с приоритетами - это алгоритм, при котором несколько очередей FIFO или RED образуют одну систему очередей. Трафик распределяется между данными очередями в соответствии с некоторыми заданными критериями, например в соответствии с приложением или получателем. Однако трафик отправляется в порядке строгой очередности: сначала трафик с высоким приоритетом, затем со средним и т. д. При всей простоте понимания и реализации этот алгоритм не очень хорошо работает при высоких нагрузках, потому что очереди с низким приоритетом оказываются блокированными в течение продолжительного периода времени или низкоприоритетный трафик имеет такую большую задержку в результате следования по окружному пути, что становится бесполезным.

Очереди в соответствии с классом (Class-Based Queuing, CBQ) - это алгоритм, при котором трафик делится на несколько классов. Определение класса трафика в значительной мере произвольно. Класс может представлять весь трафик через данный интерфейс, трафик определенных приложений, трафик к заданному подмножеству получателей, трафик с качеством услуг, гарантированным RSVP. Каждый класс имеет собственную очередь, и ему гарантируется, по крайней мере, некоторая доля пропускной способности канала. Если какой-либо класс не исчерпывает предоставленный ему лимит пропускной способности, то остальные классы увеличивают свою долю пропорциональным образом.

Взвешенная справедливая очередь (Weighted Fair Queuing, WFQ) является частным случаем CBQ, когда отдельному классу соответствуют независимые потоки. Как и в случае CBQ, каждому классу WFQ соответствует одна очередь FIFO и гарантируется некоторая часть пропускной способности канала. Если некоторые потоки используют предоставленную им пропускную способность не полностью, то другие потоки увеличивают свою долю соответственно. Так как каждый класс - это отдельный поток, то гарантия пропускной способности эквивалентна в данном случае гарантии максимальной задержки. Зная параметры сообщения, вы можете по известной формуле вычислить его максимальную задержку при передаче по сети. Выделение дополнительной пропускной способности позволяет уменьшить максимальную задержку.

Входные и выходные драйверы - это программы и чипы для приема и отправки сообщений из системы. Вообще говоря, они могут рассматриваться естественным образом в рамках протоколов сетевого уровня. Однако протоколы маршрутизации должны учитывать топологические соображения. По этой причине они рассматривают классы компонентов канального уровня по-иному. Обычно компоненты канального уровня характеризуются такими терминами, как локальные сети, каналы точка-точка, сети множественного доступа с виртуальными соединениями, каналы нерегулярного доступа и коммутируемые каналы.

Локальная сеть, вероятно, наиболее известный для сообщества Internet компонент канального уровня. Примерами могут служить сети Ethernet, Token Ring, FDDI и (несколько парадоксально) Switched Multimegabit Data Service. Предназначение локальных сетей не в обеспечении высокой загруженности, а в обеспечении высокой доступности; в результате, когда локальная сеть загружена, ее производительность менее предсказуема и далека от оптимальной. Локальную сеть можно реализовать, используя различные комбинации кабеля, концентраторов и коммутаторов. Но системы в них - как хосты, так и маршрутизаторы - имеют целый ряд общих характеристик. Если вы не занимаетесь написанием драйверов, то тогда отношение к локальной сети как средству предоставления высокодоступных сервисов некоторому множеству систем с заданной скоростью, вполне достаточно.

Каждая система имеет MAC-адрес, идентифицирующий систему в пределах данной сети. Когда какая-либо система отправляет сообщение, адрес сетевого уровня системы-получателя должен быть переведен сначала в MAC-адрес. Как это делается, зависит от протокола: в NetWare МАС-адрес является частью адреса сетевого уровня, в то время как в AppleTalk и IP протокол определения адреса запрашивает системы об их адресах для установления соответствия между адресами канального и сетевого уровня.

Ввиду необходимости такой трансляции каждой системе в локальной сети необходим уникальный адрес сетевого уровня, благодаря которому сообщение может быть доставлено ей по сети; адрес должен содержать достаточную топологическую информацию (обычно в виде номера сети или префикса адреса), чтобы маршрутизаторы знали, куда направлять сообщение. Подобная система идентификации позволяет последнему маршрутизатору передать сообщение непосредственно системе-получателю.

Организация очередей в локальных сетях сопряжена с определенными трудностями, так как системы не знают о поведении своих соседей. Протоколы локальных сетей имеют механизмы, с помощью которых системы могут договариваться об использовании среды передачи для каждого конкретного сообщения. Это согласование осуществляется обычно посредством обнаружения коллизий или передачи маркера. Такой процесс отнимает иногда немало времени, однако ввиду высокой пропускной способности длинные очереди для локальной сети не характерны.

Каналы точка-точка, например PPP или HSSI, представляют полную противоположность локальным сетям, поскольку здесь мы имеем дело только с двумя участниками. Некоторые архитектуры маршрутизации рассматривают их как внутренние интерфейсы между двумя половинками маршрутизатора, в то время как другие - как вырожденный случай локальной сети.