Смекни!
smekni.com

Принцип резолюции в исчислении высказываний и логике предикатов и его модификации (стр. 2 из 5)

В 1965 году в работе "A machine oriented logic based on the resolution principle", опубликованной в 12 номере журнала "Journal of the ACM", Дж Робинсон представил метод автоматического поиска доказательства теорем в исчислении предикатов первого порядка, получивший название "принцип резолюции". На самом деле, идея данного метода была предложена Эрбраном в 1931 году, когда еще не было компьютеров. Робинсон модифицировал этот метод так, что он стал пригоден для автоматического, компьютерного использования, и, кроме того, разработал эффективный алгоритм унификации, составляющий базис его метода.

В 1973 году "группа искусственного интеллекта" во главе с Аланом Колмероэ создала в Марсельском университете программу, предназначенную для доказательства теорем. Эта программа использовалась при построении систем обработки текстов на естественном языке. Программа доказательства теорем получила название Prolog (от Programmation en Logique). Она и послужила прообразом Пролога. Ходят легенды, что автором этого названия была жена Алана Колмероэ. Программа была написана на Фортране и работала довольно медленно.

Большое значение для развития логического программирования имела работа Роберта Ковальского "Логика предикатов как язык программирования" (Kowalski R. Predicate Logic as Programming Language. IFIP Congress, 1974), в которой он показал, что для того чтобы добиться эффективности, нужно ограничиться использованием множества хорновских дизъюнктов. Кстати, известно, что Ковальский и Колмероэ работали вместе в течение одного лета.

В 1976 г. Ковальский вместе с его коллегой Маартеном ван Эмденом предложил два подхода к прочтению текстов логических программ: процедурный и декларативный. Об этих подходах речь пойдет в третьей лекции.

В 1977 году в Эдинбурге Уоррен и Перейра создали очень эффективный компилятор языка Пролог для ЭВМ DEC–10, который послужил прототипом для многих последующих реализаций Пролога. Что интересно, компилятор был написан на самом Прологе. Эта реализация Пролога, известная как "эдинбургская версия", фактически стала первым и единственным стандартом языка. Алгоритм, использованный при его реализации, послужил прототипом для многих последующих реализаций языка. Как правило, если современная Пролог-система и не поддерживает эдинбургский Пролог, то в ее состав входит подсистема, переводящая прологовскую программу в "эдинбургский" вид. Имеется, конечно, стандарт ISO/IEC 13211– 1:1995, но его поддерживают далеко не все Прологсистемы.

В 1980 году Кларк и Маккейб в Великобритании разработали версию Пролога для персональных ЭВМ.

В 1981 году стартовал вышеупомянутый проект Института по разработке методов создания компьютеров нового поколения.

На сегодня существует довольно много реализаций Пролога. Наиболее известные из них следующие: BinProlog, AMZI-Prolog, Arity Prolog, CProlog, Micro Prolog, МПролог, Prolog-2, Quintus Prolog, SICTUS Prolog, Silogic Knowledge Workbench, Strawberry Prolog, SWI Prolog, UNSW Prolog и т. д.

В нашей стране были разработаны такие версии Пролога как Пролог-Д (Сергей Григорьев), Акторный Пролог (Алексей Морозов), а также Флэнг (А. Манцивода, Вячеслав Петухин).

Стерлинг и Шапиро в книге "Искусство программирования на языке Пролог" пишут: "Зрелость языка означает, что он больше не является доопределяемой и уточняемой научной концепцией, а становится реальным объектом со всеми присущими ему пороками и добродетелями. Настало время признать, что хотя Пролог и не достиг высоких целей логического программирования, но, тем не менее, является мощным, продуктивным и практически пригодным формализмом программирования".

3. Исчисление высказываний.

Исчисление высказываний представляет собой логику неанализируемых предположений, в которой пропозициональные константы могут рассматриваться как представляющие определенные простые выражения вроде "Сократ — мужчина" и "Сократ смертен". Строчные литеры р, q, r, ... в дальнейшем будут использоваться для обозначения пропозициональных констант, которые иногда называют атомарными формулами, или атомами.

Ниже приведены все синтаксические правила, которые используются для конструирования правильно построенных формул (ППФ) в исчислении высказываний.

(S. U) ЕслиU является атомом, то у является ППФ.

(S¬) Если U является ППФ, то —U также является ППФ.

(S. v) Если U и ф являются ППФ, то (U u ф) также является ППФ.

В этих правилах строчные буквы греческого алфавита (например, U и ф) представляют пропозициональные переменные, т.е. не атомарные формулы, а любое простое или составное высказывание. Пропозициональные константы являются частью языка высказываний, который используется для приложения исчисления пропозициональных переменных к конкретной проблеме.

Выражение -U читается как "не U", а (U v ф) читается как дизъюнкция "U или ф (или оба)". Можно ввести другие логические константы — "л" (конъюнкция), "D" (импликация, или обусловленность), "=" (эквивалентность, или равнозначность), которые, по существу, являются сокращениями комбинации трех приведенных выше констант. .

(U ^ ф) Эквивалентно¬(¬U v ф). Читается "U и ф".

(U

ф) Эквивалентно (¬U v ф). Читается "U имплицирует ф".

(U==ф) Эквивалентно (U

ф)^(ф
U). Читается "U эквивалентно ф".

В конъюнктивной нормальной форме исчисления высказываний константы "импликация" и "эквивалентность" заменяются константами "отрицание" и "дизъюнкция", а затем отрицание сложного выражения раскрывается с помощью формул Де Моргана:

¬(U^ф) преобразуется в (¬Uv¬ф), ¬(U v ф) преобразуется в (-U^ф) , ¬¬U преобразуется в U .

Последний этап преобразований — внесение дизъюнкций внутрь скобок: (£ v (U ^ф))) заменяется ((£vU\(U)^(£vф)).

Принято сокращать вложенность скобочных форм, отбрасывая в нормальной конъюнктивной форме знаки операций v и л. Ниже представлен пример преобразования выражения, содержащего импликацию двух скобочных форм, в нормальную конъюнктивную форму.

¬(pvq)

(-p^A-q) Исходное выражение.

¬¬(pvg)v(-p^- q) Исключение~.

(pvq)v(-p^- q) Ввод - внутрь скобок.

(¬pv(pvq))v(¬pv(pvq)) Занесение v внутрь скобок.

{{-p, р, q}, {¬q, р, q} } Отбрасывание А и v в конъюнктивной нормальной форме.

Выражения во внутренних скобках — это либо атомарные формулы, либо негативные атомарные формулы. Выражения такого типа называются литералами, причем с точки зрения формальной логики порядок литералов не имеет значения. Следовательно, для представления множества литералов — фразы — можно позаимствовать из теории множеств фигурные скобки. Литералы в одной и той же фразе неявно объединяются дизъюнкцией, а фразы, заключенные в фигурные скобки, неявно объединяются конъюнкцией.

Фразовая форма очень похожа на конъюнктивную нормальную форму, за исключением того, что позитивные и негативные литералы в каждой дизъюнкции группируются вместе по разные стороны от символа стрелки, а затем символ отрицания отбрасывается. Например, приведенное выше выражение

преобразуется в две фразы:

p,q<¬q.

в которых позитивные литералы сгруппированы слева от знака стрелки, а негативные справа.

Более строго, фраза представляет собой выражение вида

в котором p1..., рт q1,..., qn являются атомарными формулами, причем т=>0 и п=>0. Атомы в множестве р1,..., рт представляют заключения, объединенные операторами дизъюнкции, а атомы в множестве q1 ..., qn — условия, объединенные операторами конъюнкции.

3.1 Исчисление предикатов

Исчисление высказываний имеет определенные ограничения. Оно не позволяет оперировать с обобщенными утверждениями вроде "Все люди смертны". Конечно, можно обозначить такое утверждение некоторой пропозициональной константой р, а другой константой q обозначить утверждение "Сократ — человек". Но из (р л q) нельзя вывести утверждение "Сократ смертен".

Для этого нужно анализировать пропозициональные символы в форме предикатов и аргументов, кванторов и квантифщированных переменных. Логика предикатов предоставляет нам набор синтаксических правил, позволяющих выполнить такой анализ, набор семантических правил, с помощью которых интерпретируются эти выражения, и теорию доказательств, которая позволяет вывести правильные формулы, используя синтаксические правила дедукции. Предикатами обозначаются свойства, такие как "быть человеком", и отношения, такие как быть "выше, чем".

Аргументы могут быть отдельными константами, или составным выражением "функция-аргумент", которое обозначает сущности некоторого мира интересующих нас объектов, или отдельными квантифицируемыми переменными, которые определены в этом пространстве объектов. Специальные операторы — кванторы — используются для связывания переменных и ограничения области их интерпретации. Стандартными являются кванторы общности (V) и существования (3). Первый интерпретируется как "все", а второй — "кое-кто" (или "кое-что").

Ниже приведены синтаксические правила исчисления предикатов первого порядка.

Любой символ (константа или переменная) является термом. Если rk является символом k-местной функции и а1 ..., <xk являются термами, то Гk(a1..., ak) является термом.

(S 40

Если Tk является символом k-местного предиката

и а1 ..., ak являются термами,

то U(а1 ..., ak) является правильно построенной формулой (ППФ).

(S. -) и (S. v)

Правила заимствуются из исчисления высказывании.

(S. V) Если U является ППФ и % является переменной,

то (любой Х) U является ППФ.

Для обозначения используются следующие символы:

U — произвольный предикат;

Г — произвольная функция;

a — произвольный терм;