Федеральное агентство по образованию Российской Федерации
Государственное образовательное учреждение высшего профессионального образования
«Южно-Уральский государственный университет»
Факультет «Приборостроительный»
Кафедра «Информационно-измерительных технологий»
РЕФЕРАТ
по дисциплине "Информатика"
Принципы работы голографической памяти
Челябинск 2011 г.
АННОТАЦИЯ
Цель реферата – рассмотреть новый вид памяти, в которой данные можно записывать по всему объему памяти при помощи различных углов наклона лазера.
Задачи реферата – ознакомиться с новым видом памяти.
ОГЛАВЛЕНИЕ
Введение
1.ГОЛОГРАММЫ, НАНОТЕХНОЛОГИИ, МОЛЕКУЛЫ
2.ГОЛОГРАФИЧЕСКАЯ ПАМЯТЬ
3. ПЕРЕЗАПИСЫВАЕМАЯ ГОЛОГРАФИЧЕСКАЯ ПАМЯТЬ
4. ШАГ ЗА СУПЕРНАМАГНИЧЕННЫЙ ПРЕДЕЛ
4.1Info-MICA
4.2 Optware
ЗАКЛЮЧЕНИЕ
БиблиографиЧЕСКИЙ СПИСОК
ВВЕДЕНИЕ
Появление в скором будущем задач, требующих очень большой вычислительной мощности, заставляет уже сейчас устремиться к поиску новых технических решений не только в плане совершенствования самих процессоров, но и других компонентов ПК. Независимо от того, какая для изготовления процессора используется технология, количество данных, поставляемых им на обработку, определяется возможностями и других подсистем компьютера. Емкости современных устройств массовой памяти отражают эту тенденцию. Диски СD-ROM позволяют хранить до 700МВ информации, развивающаяся технология DVD-ROM - до 17GB. Технология магнитной записи также развивается очень быстро - за последний год типичная емкость жесткого диска в настольных компьютерах возросла до 15-20 GB и более. Однако в будущем компьютерам придется обрабатывать сотни гигабайт и даже терабайты информации - гораздо больше, чем может вместить любой из существующих сегодня CD-ROM-ов или жестких дисков. Обслуживание таких объемов данных и перемещение их для обработки сверхбыстрыми процессорами требуют радикально новых подходов при создании устройств хранения информации.
Конечно, кроме традиционных направлений развития технологий памяти, в последнее время на первый план все смелее показываются новые высокотехнологичные решения, использующие голографические методы, нанотехнологии и молекулярные способы. Исследователи в области оптики открыли потенциальную возможность создания голографической памяти. Оказывается, за счет кодирования голограммы в один блок данных можно неслабо увеличить плотность записи. При этом и скорость доступа к данным останется на высоком уровне. Технологически это выглядит следующим образом: голографический образ записывается в специальный блок данных, состоящий из определенного светочувствительного материала, затем с помощью лазера эти данные считываются. Ученые теоретически предсказывают плотность записи в 1 Тб на кубический сантиметр! Но масштабному запуску производства голографической памяти злостно мешает кучка проблем, связанных с необходимостью использовать сложные оптические системы, а также с подбором оптимального материала для носителя. Светочувствительные элементы, существующие сейчас, обладают слабой чувствительностью, что существенно затрудняет их использование для записи данных.
Кроме голографической памяти, из области экзотики можно помянуть добрым словом молекулярную память. Ученые одного из центров по молекулярной электронике изготовили систему, которая использует для запоминания цифровые биты определенных белковых молекул, которые присутствуют в различных микроорганизмах, проживающих преимущественно в соляных болотах. Если не тяготить тебя подробностями, могу сказать, что фотоцикл этих молекул доводит их до состояния либо логического нуля, либо единицы, а в результате получаем практически идеальный триггер. Ученые уже построили первый прототип системы памяти. Многие эксперты склоняются к тому, что молекулярная память может в недалеком будущем составить достойную конкуренцию полупроводниковой и побить ее целым набором преимуществ, таких как энергонезависимость и работоспособность в большем диапазоне температур.
Нанотехнологии все активнее проникают в нашу жизнь. К примеру, ученые из Дрезденского института IFW создали запоминающие элементы, выполненные на основе нанотрубок с ферромагнитным наполнителем. В опытах были использованы углеродные нанотрубки диаметром 10 нм, внутрь которых помещались атомы кобальта или железа. Если результаты экспериментов подтвердятся, то теоретически можно считать возможным создание принципиально нового вида памяти, плотность записи которого в 1000 раз выше привычной нам. Тем не менее, даже при самом счастливом исходе ожидать появления подобной нанопамяти в ближайшем будущем не стоит: помимо технологии хранения данных, важно еще создать соответствующее аппаратное обеспечение, способное работать в таких масштабах.
2. ГОЛОГРАФИЧЕСКАЯ ПАМЯТЬ
Устройства, использующие свет для записи и считывания данных являются основными уже достаточно долгое время. Появление компакт-дисков в начале 80-х, которые позволяли сохранять сотни мегабайт (783) на диске диаметром меньше 12 сантиметров и не толще 1.2 мм. В 1997 году появилась усовершенствованная версия этой технологии - DVD, которая позволила сохранять существенно больше информации (15.9 GB двухслойный стандарт) на носителе аналогичного размера.
Сейчас ученые работают на созданием другого способа хранения информации - голографической памяти, которая в отличии от описанных выше технологий, использующих только поверхность носителя, предполагает работу со всем его объемом. Трехмерное хранение информации позволит существенно увеличить емкость и уменьшить размеры информационных носителей. Подобная технология (см.рисунок1) может появится всего через несколько лет. Это станет очередной революций в области хранения информации.
Рисунок 1
Голографическая память позволит хранить около 1 терабайта в кристалле, соизмеримом с кубиком сахара. Исследователь Pieter J. van Heerden из компании Polaroid первым предложил идею голографической памяти еще в 60-х годах. Десятилетием позже исследователи из RCA Laboratories демонстрировали технологию записи 500 голограмм на небольшом кристалле. Успех дешевой полупроводниковой памяти на некоторое время стал причиной прекращения работ в данном направлении. Только совсем недавно IBM и Lucent's Bell Labs возобновили исследования. Вот основные части, которые необходимы для построения системы голографического хранения информации:
· Аргоновый лазер.
· Устройство, которое позволит разделить луч.
· Зеркала, для смены направления
· LCD панель
· Линзы
· Фотополимер
· (CCD) camera
Луч, аргонового лазера, разделяется на два. Первый называется сигнальным, он проходит через пространственный светомодулятор (spatial-light modulator), которым является LCD дисплей, отображающий необходимую нам информацию в бинарном виде. После этого сигнальный луч содержит необходимые нам данные. Затем данный луч попадает на фотополимер или на кристалл другого типа. Второй луч, называемый связывающим, попадает на информационный носитель сразу. Когда два луча "встречаются", результатом является интерференционная картина, или интерферограмма. Данные сохраняются в соответствующей части кристалла как голограмма. (см. Рис. 2-3)
Рисунок 2
Рисунок 3
Основной особенностью голографической памяти является скорость доступа к сохраненной информации. Для ее восстановления связывающий луч освещает кристалл точно под тем же углом, под каким производилась "запись". Каждая "страница" данных сохраняется в разных областях кристалла, зависящих от угла связывающего луча. Реконструированная страница подается на CCD камеру и соответствующим образом интерпретируется.
3. ПЕРЕЗАПИСЫВАЕМАЯ ГОЛОГРАФИЧЕСКАЯ ПАМЯТЬ
Генетически модифицированный бактериальный белок может позволить создать более эффективные устройства хранения информации.
В отличие от обычных двумерных носителей, голографическая память позволяет записывать информацию в трёх измерениях. Первые голографические носители информации уже поступили на рынок, однако перезапись информации в реальном времени пока для них недостижима. Американские исследователи из Университета Коннектикута продемонстрировали возможность создания перезаписываемой голографической памяти, используя лазеры для записи данных на бактериальных белках.
Новая технология основана на использовании бактериородопсина бактерии Halobacterium salinarum – светочувствительного мембранного белка, вырабатываемого микроорганизмом, когда концентрация кислорода в среде становится опасно низкой. Поглощая квант света, белок претерпевает серию химических превращений, приводящую к «прокачке» протона через мембрану, что создаёт разность электрохимических потенциалов на мембране и позволяет бактерии производить энергию.
В течение цепи химических превращений белок проходит через некоторые конфигурации, которые могут быть использованы для создания голографических изображений при освещении. В природных условиях время жизни промежуточных конфигураций чрезвычайно мало: весь цикл длится всего 10–20 миллисекунд. Однако, более ранние исследования продемонстрировали возможность путём освещения красным светом на конечных стадиях цикла перевести белок в состояние, стабильное в течение многих лет – так называемое Q-состояние.
Для создания голографического носителя информации приготавливается суспензия бактериородопсина в полимерном геле. Луч зелёного лазера расщепляется на два, в один из которых кодируются данные, после чего лучи интерферируют в геле. Для считывания данных интерференционная картина освещается одним лучом красного света. Стереть же данные можно синим лазерным лучом.