Смекни!
smekni.com

Принципы структуризации и проектирования сетей Ethernet (стр. 2 из 2)

5. Повторителей класса IIможет быть не более двух.

Мост (bridge) является средством передачи кадров между двумя или более сегментами-доменами коллизий. Мост анализирует заголовок кадра его интересуют МАС - адреса источника и получателя. Мост прослушивает кадры, приходящие каждый на свой порт, и составляв, таблицы МАС - адресов узлов, подключенных к этим портам (по адресам источника) Если приходящий кадр имеет адрес назначения, принадлежащий тому же сегменту то этот кадр мостом фильтруется - никуда не транслируется. Если адрес назначения известен мосту и относится к другому сегменту, мост транслирует этот кадр в соответствующий порт. Если положение адресата назначения еще не известно мосту кадр транслируется во все порты (кроме того, откуда он пришел). Широковещательные и многоадресные кадры также транслируются во все порты. Трансляция предполагает доступ к сегменту по обычной схеме: ожидание отсутствия несущей, передача кадра и, в случае коллизий, повторные попытки передачи. Для выполнения этих процедур мост должен иметь буферную память для промежуточного хранения кадров, а также память для хранения таблиц МАС - адресов узлов сегментов всех портов. Описанный алгоритм поведения относится к "прозрачным" мостам.

Кадры с широковещательными МАС - адресами передаются мостом на все его порты, как и кадры с неизвестным адресом назначения. Такой режим распространения кадров называется "затоплением сети* (flood). Наличие мостов в сети не препятствует распространению широковещательных кадров по всем сегментам сети, сохраняя ее прозрачность. Однако это является достоинством только в том случае, когда широковещательный адрес выработан корректно работающим узлом. Однако часто случается так, что в результате каких-либо программных или аппаратных сбоев протокол верхнего уровня или сам сетевой адаптер начинают работать некорректно и постоянно с высокой интенсивностью генерировать кадры с широковещательным адресом в течение длительного промежутка времени.

2. Ограничения топологии сети, построенной на мостах

Слабая защита от широковещательного шторма - одно из главных ограничений моста, но не единственное. Другим серьезным ограничением функциональных возможностей мостов является невозможность поддержки петлеобразных конфигураций сети. Еслив сети построенной с использованием мостов, появятся замкнутые маршруты, то это приведет к следующим последствиям:

1)"размножению" кадра, т.е. появлению нескольких его копий;

2) бесконечной циркуляции копий кадра по петле в противоположных направлениях, т.е. засорению сети ненужным трафиком;

3) постоянной перестройке мостами своих адресных таблиц, так как кадр с адресом источника будет появляться то на одном порту, то на другом;

4) большой задержке передачи кадров за счет их буферирования и последовательного обслуживания портов.

Чтобы исключить все эти нежелательные эффекты, мосты нужно применять так, чтобы между логическими сегментами не было петель, то есть строить с помощью мостов только древовидные структуры, гарантирующие наличие только одного пути между любыми двумя сегментами. Мост целесообразно устанавливать в точке сети, обеспечивающей не более 20 % передач через мост.

3. Обоснование размера (диаметра) сети Ethernet

При выборе конфигурации сети Ethernet, состоящей из сегментов различных типов, возникает много вопросов, связанных, прежде всего, с максимально допустимым размером (диаметром) сети и максимально возможным числом различных элементов. Сеть будет работоспособной только в том случае, если максимальная задержка распространения сигнала в ней не превысит предельной величины. Эта величина определяется выбранным методом управления обменом CSMA/CD (Carrier-SenseMultipleAccesswithCollisionDetection - множественный доступ с контролем несущей и обнаружением коллизий), основанным на обнаружении и разрешении коллизий.

Прежде всего напомним, что для получения сложных конфигураций Ethernetиз отдельных сегментов применяются концентраторы двух основных типов:

1)репитерные концентраторы, которые представляют собой набор репитеров и никак логически не разделяют сегменты, подключенные к ним;

2)коммутирующие {awitching) концентраторы или коммутаторы, которые передают информацию между сегментами, но не передают конфликты с сегмента на сегмент.

Применение репитерного концентратора не разделяет зону конфликта, в то время как каждый коммутирующий концентратор делит зону конфликта на части. В случае коммутатора оценивать работоспособность надо для каждой части сети отдельно, а в случае репитерных концентраторов надо оценивать работоспособность всей сети в целом.

Допустимые размеры сети Ethernetопределяются рядом факторов.

1.Ограничения на длину кабельного сегмента, связанные с затуханием и искажением формы сигнала: 10Base-5 - 500 м и правило "5-4-3", 10Base-2 - 185 (300) м и правило "5-4-3", 10Base-T/100Base-TX/100Base-T4 - 100 м.

2.Ограничение на количество узлов в домене коллизий: не более 1 024.

3. Ограничение на количество повторителей между любой парой узлов: Ethernet - 4, FastEthernet - 1 или 2, GigabitEthernet - 1.

4. Ограничения на размер домена коллизий, связанные со временем распространения сигнала между конечными узлами сети: время двойного оборота для Ethernetи FastEthernetне должно превышать 512 bt, для GigabitEthernet - 2 048 bt.

Для сетей на медных кабелях, как правило, достаточно выполнить первые три условия. Оптоволокно, особенно одномодовое, позволяет значительно увеличивать длину кабельного сегмента, но при этом ограничивающим фактором будет выступать задержка распространения сигнала. Задержки 25,6 мкс (для 10 Мбит/с) и 2,6 мкс (для 100 Мбит/с) соответствуют длине стеклянного волокна около 5000 и 500 м.

При описании временных диаграмм сетей типа Ethernetи FastEthernet, а также при определении предельных размеров сети широко используются следующие термины.

1.IPG (interpacketgap, межпакетная щель) - минимальный промежуток времени между передаваемыми пакетами (9,6 мкс для Ethernet; 0,96 мкс для FastEthernet). Другое название - межкадровый интервал.

2.ВТ (BitTime, время бита) - интервал времени для передачи одного бита (100 не для Ethernet; 10 не для FastEthernet).

3.PDV (PathDelayValue, значение задержки в пути) - время прохождения сигнала между двумя узлами сети (круговое, то есть удвоенное). Учитывает суммарную задержку в кабельной системе, сетевых адаптерах, повторителях и других сетевых устройствах.

4.Collisionwindow (окно коллизий) - максимальное значение PDVдля данного сегмента.

5.Collisiondomain (область коллизий, зона конфликта) - часть сети, на которую распространяется ситуация коллизии, конфликта.

6. Slottime (время канала) - максимально допустимое окно коллизий для сегмента (512 bt).

7.Minimumframesize - минимальный размер кадра (512 бит или 64 байта).

8.Maximumframesize - максимальный размер кадра (1 518 байт).

9.Maximumnetworkdiameter (максимальный диаметр сети) - максимальная допустимая длина сегмента, при которой его окно коллизий не превышает времени канала slottime.

10. Truncatedbinaryexponentialbackoff (усеченная двоичная экспоненциальная отсрочка) - задержка перед следую щей попыткой передачи пакета после коллизии (допускается максимум 16 попыток).

Вторая модель, применяемая для оценки конфигурации Ethernet, основана на точном расчете временных характеристик выбранной конфигурации сети. Она иногда позволяет выйти за пределы жестких ограничений модели 1. Применение модели 2 совершенно необходимо в том случае, когда размер проектируемой сети близок к максимально допустимому.

В модели 2 используются две системы расчетов: - " первая система предполагает вычисление двойного (кругового)

времени прохождения сигнала по сети и сравнение его

с максимально допустимой величиной (512 bt); - * вторая система проверяет допустимость сокращения (на 49 bt)

величины получаемого межкадрового временного интервала,

межпакетной щели (IPG - InterPacketGap) в сети.

При этом вычисления в обеих системах расчетов ведутся для наихудшего случая, для пути максимальной длины, то есть для такого пути передаваемого по сети пакета, который требует для своего прохождения максимального времени. При первой системе расчетов выделяются три типа сегментов:

· начальный сегмент - это сегмент, соответствующий началу пути максимальной длины;

· конечный сегмент - это сегмент, расположенный в конце пути максимальной длины;

· промежуточный сегмент - это сегмент, входящий в путь максимальной длины, но не являющийся ни начальным, ни конечным.

Промежуточных сегментов в выбранном пути может быть несколько, а начальный и конечный сегменты при разных расчетах могут меняться местами друг с другом. Выделение трех типов сегментов позволяет автоматически учитывать задержки сигнала на всех концентраторах, входящих в путь максимальной длины, а также в приемопередающих узлах адаптеров.