n проблема розпізнавання в класичній постановці: об’єкту, що спостерігається, до одного з заздалегідь відомих класів об’єктів (наприклад, відрізнити легковий автомобіль від вантажного).
Людина робить класифікацію просто. Наприклад, чоловік, повернувшись додому з роботи, відразу ж пізнає свою дружину, але більшість людей в повному обсязі не зможе пояснити, як він це робить. Як правило, раціонального пояснення немає. Теорія розпізнавання, яка інтенсивно розвивається, необхідна для того, щоб навчити розв’язувати задачі розпізнавання штучні інтелектуальні системи на основі досвіду розпізнавання людиною. Зокрема, сформульовано такий ключовий принцип [Хант)]: будь-який об`єкт у природі - унікальний; унікальні об`єкти - типізовані. У відповідності до цього принципу, розпізнавання здійснюється на основі аналізу певних характерних ознак. Вважається, що в природі не існує двох об’єктів, для яких співпадають абсолютно всі ознаки, і це теоретично дозволяє здійснювати ідентифікацію. Якщо ж для деяких об’єктів співпадають деякі ознаки, ці об’єкти теоретично можна об’єднувати в групи, або класи, за цими співпадаючими ознаками. Проблема полягає у тому, що різноманітних ознак існує незліченна кількість. Незважаючи на легкість, з якою людина проводить розпізнавання, вона дуже рідко в змозі виділити ознаки, суттєві для цього. До того ж, об’єкти, як правило, змінюються з часом. Ми далі спробуємо показати, що розпізнавання об’єктів і ситуацій має виняткове значення для орієнтації людини в навколішньому світі і для прийняття вірних рішень. Розпізнавання, як правило, здійснюється людиною на інтуїтивному, підсвідомому рівні, людина навчилася цьому за мільйони років еволюції.
Інша інтелектуальна задача – моделювання мислення;.Можна виділити два типи процесів мислення:
n підсвідоме інтуїтивне мислення, механізми якого на сучасному етапі вивчені недостатньо і яке дуже важко формалізувати та автоматизувати;
n дедуктивнілогічні побудови за формалізованими законами логіки. Дедукцією називається перехід від загального до часткового, виведення часткових наслідків з загальних правил.І тут пересічна людина рідко в змозі пояснити, за якими алгоритмами вона здійснює логічне виведення. Але методики таалгоритми, за якими можна автоматизувати виведення наслідків з фактів або логічну перевірку тих чи інших фактів, досить відомі.
Перш за все, це формальна логіка Аристотеля на основі конструкцій, які отримали назву силогізмів. Вони практично неподільно панували в логіці аж до початку XIX століття, тобто до появи булевої алгебри. Немає ніякої необхідності давати якісь формальні визначення силогізмів. Наведемо лише один класичний приклад.
Перше твердження. Усі люди смертні.
Друге твердження. Сократ - людина.
Висновок: Сократ смертний.
Якщо перше та друге твердження у силогізмі істинні та задовольняють певним загальним формальним вимогам, тоді і висновок буде істинним незалежно від змісту тверджень, що входять до силогізму. При порушенні цих формальних вимог легко припуститися логічних помилок, подібних до таких:
Всі студенти вузу А знають англійську мову
Петров знає англійську мову.
Отже, Петров - студент вузу А.
Або:
Іванов не готувався до іспиту і отримав двійку.
Сидоров не готується до іспиту.
Отже, і Сидоров отримає двійку.
Аристотелем було запропоновано декілька формальних конструкційсилогізмів, які він вважав достатньо універсальними. Лише у XIX столітті почала розвиватися сучасна математична логіка, яка розглядає силогізми Аристотеля як один із часткових випадків. Основою більшості сучасних систем, призначених для автоматизації логічних побудов, є метод резолюцій Робінсона. Він буде описаний пізніше. Але практична реалізація логічних зіткнулася з серйозними проблемами. Головна з них - це феномен,який Річард Беллман назвав прокляттям розмірності. На перший погляд, описати знання про зовнішній світ можна було б, наприклад, таким чином: “об’єкт А має рисиX, Y, Z. В відрізняється від А тим, що має рису Н, і т.д”.Але зовнішній світ є винятково складним переплетінням різноманітних об’єктів та зв’язків між ними.Для того, щоб тільки ввести всю цю інформацію до пам’яті інтелектуального пристрою, може знадобитися не одна тисяча років. Ще більше років буде потрібно, щоб врахувати всі необхідні факти при логічному виведенні. Реальні програми, що здійснюють логічне виведення (вони часто називаються експертними системами) мають досить обмежене застосування. Вони мають обмежений набір фактів та правил з певної, більш-менш чітко окресленої предметної галузі і можуть використовуватися лише у цій галузі. Що ж стосується людини, то якість її логічного мислення також часто буває далекою від бездоганної. Люди часто роблять логічні помилки, а інколи взагалі керуються принципами, невірними з точки зору нормальної логіки. Дуже часто свідоме логічне виведення на певному етапі обривається, і рішення знову-ж таки приймається на підсвідомому, інтуїтивному рівні. Зрозуміло, що таке рішення може бути помилковим. Але, якби в основі поведінки людини лежали спроби проводити дедуктивні побудови з логічного початку до логічного кінця, людина була б практично не здатною до будь-якої діяльності: фізичноїабо розумової – це вимагало б значного часу аналізу. Спільною рисою згаданих вище проблем була їх погана формалізованість, відсутність або незастосовністьчітких алгоритмів розв’язку. Вирішення подібних задач і є основним предметом розгляду в теорії штучного інтелекту. До зовсім іншого класу відносяться задачі, пов’язані з обчисленнями.В принципі, важко відповісти на запитання, як саме людина здійснює ті чи інші обчислення. Добре відомими є і низька швидкість, і невисока надійність цього виду людської діяльності. Але були запропоновані ефективні принципи комп’ютерних обчислень, які радикально відрізняються від тих, які застосовуються людиною.і добре формалізовані, алгоритмічні методики забезпечили рівень вирішення обчислювальних задач, абсолютно недосяжний для людського інтелекту. Водночас цей високий рівень алгоритмізації значною мірою зумовив слабкість традиційних комп’ютерних систем при розв’язанні тих інтелектуальних задач, з якими людина справляється непогано. З появою таких обчислювальних потужностей мрійники шістедесятих – сімдесятих років ХХ століття ставили задачу моделювання в повному обсязі роботу людського мозку. Теоретично, цю задачу з певними обмеженнями можна було б вирішити. Але складність потрібних обчислень виявилася такою, що змусила більшість дослідників відійти від поставленої задачі і перейти до більш простих задач; моделювання принципів роботи людського мозку при розв’язку конкретно визначених типів задач.
3.2Тест Тьюринга і фатичний діалог
Відомий англійський учений Алан Tьюринг сформулював тезу, спрямовану на визначення моменту, з якого машину можна вважати інтелектуальною [ Поспелов]. Нехай експерт за допомогою телефону або подібного віддаленого пристрою спілкується з кимось (або чимось), що може бути як людиною, так і машиною. Експерт дає певні тести-завдання. За результатами відповідей він повинен визначити, з ким він має справу - з людиною чи з ЕОМ. Якщо він приймає комп'ютер за людину, комп'ютер може вважатися інтелектуальним. Така перевірка дістала назву тесту Тьюринга. Багато спеціалістів вважали, що тест Тьюринга є цілком задовільним для визначення рівня інтелектуальності комп’ютерної системи.Але виявилось, що це не зовсім так. В основі тесту Тьюринга лежить неявне припущення про те, що необхідною умовою ведення діалогу є розуміння співрозмовника. Але у кінці 60-х рр. американський кібернетик Дж. Вейценбаум створив дві програми - ЕЛІЗА і ДОКТОР для використання в психіатрії. Виявилось, що вони можуть невірно зорієнтувати експерта в умовах тесту Тьюринга. В основі побудови цих програм лежить ідея фатичного діалогу.
Визначення. Фатичним діалогом називається діалог без розуміння співрозмовника, на основі формального перефразування почутого.
Так, наприклад, на висловлення пацієнта "Ви не відверті зі мною" програма може відповісти "Чому Ви думаєте, що я не відверта з Вами?" У ряді випадків програма може видати заздалегідь заготовлену фразу. Так, на слова пацієнта "Мій батько мене не любив" вона може відповісти "Розкажіть мені про Вашу сім’ю".
Звичайно, це не має ніякого відношення ні до розуміння, ні до інтелекту, але багато людей, які проводили з цими програмами тест Тьюринга, вирішили, що мають справу з людиною.
3.3Метод комп’ютерної реалізації фатичного діалогу
В основіпсевдоінтелектуальних програм, які можуть підтримувати фатичний діалог з людиною або з іншими аналогічними програмами, можуть лежати дуже прості алгоритми співставлення зі зразками. Тут описується класичний метод, що дозволяє писати подібні програми [Уїнстон].
Розглянемо “анатомію” програми ДОКТОР у дещо спрощеному вигляді. Діалог з цією програмою може бути, наприклад, таким:
ДОКТОР: Я Вас слухаю.
ЛЮДИНА: Мене бентежить погода.
ДОКТОР: Як давно Вас бентежить погода?
ЛЮДИНА: Відтоді, як померла моя мати.
ДОКТОР: Розкажіть про Вашу сім’ю.
ЛЮДИНА: Всі вони захоплюються комп’ютерами.
ДОКТОР: Машини Вас лякають.
ЛЮДИНА: Ні.
ДОКТОР: Будь ласка, не будьте так небагатослівні…
І так далі до нескінченності.
В основі методу, необхідного для реалізації такого діалогу,можележати механічне порівняння речень, які вводяться людиною,зі зразками(шаблонами) речень, що зберігаються програмою. Якщо речення співпало в повній мірі з одним із зразків, видається одна з відповідей, заздалегідь заготовлених для цього зразка.
Можна розглянути декілька варіантів порівнянь, кожний з них може бути легко запрограмований.