Смекни!
smekni.com

Проблематика штучного інтелекту (стр. 5 из 6)


5.Фрейми

В основі теорії фреймів лежить сприйняття стереотипних ситуацій, що мають, напри­клад, місце в процесі функціонування складних об'єктів, зокре­ма, виробничих. Для подання й опису стереотипних об'єктів, подій або ситуацій було введено поняття "фрейми", що є склад­ними структурами даних. У загальному вигляді фрейм можна розглядати як сітку, що складається з кількох вершин і відно­шень. На верхньому рівні фрейму подана фіксована інформація:факт стосовно стану об'єкта, який звичайно вважається істин­ним, На наступних рівнях розташовано множину так званих тер­мінальних слотів (терміналів), які обов'язково повинні бути за­повнені конкретними значеннями та даними. У кожному слоті задається умова, яка повинна виконуватися при встановленні відповідності між значеннями (слот або сам встановлює відповідність, або це робить дрібніша складова фрейму). Проста умова позначається позначкою і може, наприклад, містити вимо­га, щоб відповідність встановлював користувач, щоб досить пов­ним був опис значень тощо. Складні умови вказують відношення між фактами, що відповідають декільком терміналам.

Поєднавши множину фреймів, що є відношеннями, можна побудувати фреймову систему, найважливішою перевагою якої є можливість перетворення фреймів в одній системі.


6.1 Семантичні мережі

Звичайні семантичні мережі складаються з вершин, що відповідають об’єктам чи поняттям, а також дуг, що відповідають відношенням, та зв’язують ці вершини. У таких мережах вершини можуть відповідати не тільки об’єктам чи поняттям, але і відношенням, логічним складовим частинам інформації (фактам істинності та хиби), комплексним об’єктам тощо. Усьому, що може розглядатися, як самостійна одиниця, повинна бути співставлена власна вершина. Наприклад, вершини можуть бути співставлені завершеним подіям або ситуаціям. Вершини поділяються на два класи: визначені (в-вершини) та невизначені (н-вершини). Перші відповідають впізнаним об’єктам, виявленим відношенням розпізнаним подіям, ситуаціям. Другі – невпізнаним, невиявленим.

Окрім зазначених, вводяться вершини з’вязку. Вони поєднуються поміченими ребрами (ребрами різних типів) з вершинами, взятими з множини вищезазначених вершин. Фактично, ребра помічаються цифрами, що визначають семантичний відмінок відношення. В результаті утворюється фрагмент, що відповідає елементарній ситуації, тобто об’єктам, що пов’язані відношенням. Такий фрагмент називають елементарним. Елементарний фрагмент можна представити у вигляді павука з поміченими лапками. При цьому тіло такого павука є вершина зв’язку, а лапки – ребра, якими він ціпляється за інші вершини. Номер, або тип лапки, визначає роль, яку грають схоплені ним вершини, у представленій ситуації, тобто або це вершина-об’єкт, вершина-відношення, вершина, що відповідає факту істинності – хиби, або вершина, що відповідає всій елементарній ситуації. Спеціальний поділ перерахованих вершин на множини, що не перетинаються, не виконується. Кожна з них може грати будь-яку роль. Таким чином, ситуація або логічні складові, можуть бути пов’язані своїми відношеннями, відношення також можуть бути об’єктами іншого відношення і.т.д. В результаті забезпечуються широкі можливості представлення.

Обробка системних знань базується на принципі накладення мереж, послідовному співставленні їх фрагментів. Процедура такого співставлення визначається графами, тобто операціями, що вони задають. В результаті знаходяться невизначені компоненти інформації. На відміну від звичайного співставлення таблиць або зразків (фреймів) при накладенні мереж використовується більш складний підхід – окільний. Для пошуку невизначених компонент використовують їх околи. При цьому доводиться постійно шукати співставлювані компоненти, обирати напрям пошуку. Все це робить процедуру накладання достатньо складною, проте і більш універсальною.

Зазначені принципи було покладено у основу механізмів, що забезпечують обробку інформації, реалізацію різних видів діяльності. Обробка у багатьох випадках зводиться до формування графів та виконання операцій, що задаються графами. Таким чином забезпечується вирішення двох основних задач – конкретизації та перетворення. Перша задача полягає у знаходженні невизначених складових вхідної інформації, у виконанні різноманітних перевірок, а друга задача – у перетворенні інформації. Перетворення керується за допомогою спеціальних засобів, що називаються мережними продукціями. Такі засоби можна вважати певним різновидом графів, які задають спеціальні операції пошуку мереж визначених конструкцій, їх вилучення та заміни на інші мережі. За допомогою таких продукцій представляються різні визначення, а також деякі види умовних речень.

Слід зазначити, що далеко не кожна мережа, складена з фрагментів, буде представляти правильну чи допустиму інформацію. Фрагменти можуть представляти відношення, що ніяк не узгоджуються одне з одним, наприклад відношення бути братом (R1) та мати квадратну форму (R2). Тоді мережа

<x3, t, r1, a1, x1> ° <x4, t, r2, x1>

буде репрезентувати Дехто Х1, який є братом А1, має квадратну форму. Щоб уникнути подібних неузгодженостей, згідно схеми обробки в процесі вводу інформації виконується перевірка на її допустимість. Для цього використовуються так звані обов’язкові знання, роль яких відіграють семантичні графи.

6.2Різні способи задання семантичних мереж: переваги і недоліки

Ми уже зазначали, що одні й ті самі твердження можна зображати різними семантичними мережами і концептуальними графами. Повернемося до речення “Студент Іванов отримав 5 на іспиті з штучного інтелекту”.

Цьому концептуальному графі відповідає такий набір бінарних фактів у формі “об’єкт – атрибут – значення”:

Іванов – Є – Студент

Іванов – Здав – Шт. Інтелект

Іванов – Оцінка – 5

Шт. Інтелект – Є – Іспит

Рис.3. Концептуальний граф: перший варіант

Основна перевага цього рішення – його “природність”. “Об’єкт” “Іванов” відповідає реальній сутності – студентові Іванову.

Але таке рішення має очевидні вади. Це, зокрема, слабка інтерпретованість дуг “Здає” та “Оцінка”, ігнорування того факту, що “Шт. Інтелект” – це не тільки “Іспит”, але й наукова дисципліна і т.п. Але найважливіший недолік – це складність задання зв’язків “один до багатьох” і “багато до багатьох”.

Уявіть собі, що в базі знань зберігається ще один факт про цього ж студента, а саме “Студент Іванов отримав 2 на іспиті з Ліспу”. Цей факт може бути описаний аналогічним концептуальним графом, але як об’єднати ці два графи в семантичну мережу? “Очевидний” розв’язок є незадовільним через свою неоднозначність: незрозуміло, яку оцінку з якого предмету отримав Іванов.

Рис.4. Незадовільне задання звязків “один до багатьох”

Можна запропонувати різні виходи з такого становища. Наприклад, можливе таке рішення:

Рис.5. Семантична мережа з неінтерпретованими дугами

Недолік такого рішення – повна неінтерпретованість міток “5” і “2”; вирішити цю проблему можна лише шляхом додавання до відповідних дуг допоміжних зв’язків.

Можна запропонувати розв’язки на основі структурованих семантичних мереж, для яких характерна певна внутрішня структура. Цю структуру можна ввести, наприклад, таким чином:

Рис.6. Приклад структурованої семантичної мережі

Рамками обведені фрагменти семантичної мережі, дуги яких об’єднані заданим відношенням (у даному випадку відношенням кон’юнкції). Але навряд чи подібна структуризація, яка неминуче ускладнює програмування, є необхідною для таких простих мереж.

Нарешті, можна застосувати такий типовий прийом.

Вводяться додаткові предикати, які відображають відношення “Студент Х здав іспит У. Тоді твердження “Студент Іванов отримав 5 на іспиті з штучного інтелекту” та “Студент Іванов отримав 2 на іспиті з Ліспу” можуть бути подані як кон’юнкції таких бінарних фактів:

Іванов – Є – СтудентІсп_1 – Є – ІспитІсп_1 – Хто_Здав_ - ІвановІсп_1 – Предмет - Шт.ІнтІсп_1 – Оцінка - 5 Іванов – Є – СтудентІсп_2 – Є – ІспитІсп_2 – Хто_Здав - ІвановІсп_2 – Предмет – ЛіспІсп_2 – Оцінка - 2

Зверніть особливу увагу на номери в предикатних іменах: кожному фактові здачі іспиту відповідає свій номер, для іншого студента або для іншого предмету предикатне ім’я буде іншим (інакше при описі відношення “багато до багатьох” знову виникне неоднозначність.


7.Нейронні мережі

Нейронні мережі, або штучні нейронні мережі, являють собою розвиток моделей, які виникли в результаті спроб імітування механізму мислення людини. Для визначення класів задач штуч­ного інтелекту (насамперед, розпізнавання, інтелектуального управління динамікою складних механічних систем тощо) нейромережні моделі часто забезпечують ефективніше рішення, ніж традиційні символьні підходи.

У самих загальних рисах результатом функціонування нейронної мережі є сигнал, що ідентифікує належність вхідного зоб­раження до одного з кількох класів (тобто мережа здійснює категоризацію зображень).

Елементарна складова мережі - нейрон - має кілька входів і один вихід. Елементи вхідного вектора множаться на вагові коефіцієнти W1.W2,...,Wn;зважені значення сумуються і надходять до входу порогового елемента, двійковий вихід якого є виходом нейрона. У загально­му випадку для відтворення нелінійності можуть використовуватися не тільки "ступеневі", а й "похилі" функції.